1
|
Espley RV, Jaakola L. The role of environmental stress in fruit pigmentation. PLANT, CELL & ENVIRONMENT 2023; 46:3663-3679. [PMID: 37555620 DOI: 10.1111/pce.14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
For many fruit crops, the colour of the fruit outwardly defines its eating quality. Fruit pigments provide reproductive advantage for the plant as well as providing protection against unfavourable environmental conditions and pathogens. For consumers these colours are considered attractive and provide many of the dietary benefits derived from fruits. In the majority of species, the main pigments are either carotenoids and/or anthocyanins. They are produced in the fruit as part of the ripening process, orchestrated by phytohormones and an ensuing transcriptional cascade, culminating in pigment biosynthesis. Whilst this is a controlled developmental process, the production of pigments is also attuned to environmental conditions such as light quantity and quality, availability of water and ambient temperature. If these factors intensify to stress levels, fruit tissues respond by increasing (or ceasing) pigment production. In many cases, if the stress is not severe, this can have a positive outcome for fruit quality. Here, we focus on the principal environmental factors (light, temperature and water) that can influence fruit colour.
Collapse
Affiliation(s)
- Richard V Espley
- Department of New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
2
|
Alsharairi NA. Exploring the Diet-Gut Microbiota-Epigenetics Crosstalk Relevant to Neonatal Diabetes. Genes (Basel) 2023; 14:genes14051017. [PMID: 37239377 DOI: 10.3390/genes14051017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Neonatal diabetes (NDM) is a rare monogenic disorder that presents as hyperglycemia during the first six months of life. The link between early-life gut microbiota dysbiosis and susceptibility to NDM remains uncertain. Experimental studies have demonstrated that gestational diabetes mellitus (GDM) could develop into meconium/gut microbiota dysbiosis in newborns, and thus, it is thought to be a mediator in the pathogenesis of NDM. Epigenetic modifications have been considered as potential mechanisms by which the gut microbiota and susceptibility genes interact with the neonatal immune system. Several epigenome-wide association studies have revealed that GDM is associated with neonatal cord blood and/or placental DNA methylation alterations. However, the mechanisms linking diet in GDM with gut microbiota alterations, which may in turn induce the expression of genes linked to NDM, are yet to be unraveled. Therefore, the focus of this review is to highlight the impacts of diet, gut microbiota, and epigenetic crosstalk on altered gene expression in NDM.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast, QLD P.O. Box 4222, Australia
| |
Collapse
|
3
|
Rahn C, Bakuradze T, Stegmüller S, Galan J, Niesen S, Winterhalter P, Richling E. Polyphenol-Rich Beverage Consumption Affecting Parameters of the Lipid Metabolism in Healthy Subjects. Int J Mol Sci 2023; 24:ijms24010841. [PMID: 36614281 PMCID: PMC9821765 DOI: 10.3390/ijms24010841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Polyphenols are a diverse and widely distributed class of secondary metabolites, which possess numerous beneficial properties including a modulation of glucose and lipid metabolism. This placebo-controlled human intervention study was performed to explore effects of polyphenol-rich beverage (PRB) uptake on lipid metabolism, as well as DNA integrity. In this case, 36 healthy men were randomly divided to consume either 750 mL of a PRB (containing 51% chokeberry, cranberry, and pomegranate) or a placebo drink daily for eight weeks. Only PRB consumption was found to decrease fat and protein intakes significantly compared to the preceding one-week washout period. During the intervention with PRB an increased fat-free mass was shown after four weeks, whereas a significant elevation in body weight and leptin was observed in placebo group. Blood lipids were not significantly altered after PRB consumption, while triglyceride levels increased after placebo drink intake. In platelets, a significant inhibition of phosphodiesterase (PDE) activity was observed, more pronounced in test group. Consuming the PRB decreased total DNA strand breaks in whole blood as well as H2O2-induced breaks in isolated lymphocytes. Overall, our study suggested beneficial effects on lipid metabolism by reduced energy intake, modulation of biomarkers such as PDE activity and improved DNA integrity associated with PRB consumption.
Collapse
Affiliation(s)
- Celina Rahn
- Division of Food Chemistry and Toxicology, Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Tamara Bakuradze
- Division of Food Chemistry and Toxicology, Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Simone Stegmüller
- Division of Food Chemistry and Toxicology, Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Jens Galan
- Medical Institute, Hochgewanne 19, D-67269 Grünstadt, Germany
| | - Sonja Niesen
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| | - Elke Richling
- Division of Food Chemistry and Toxicology, Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
- Correspondence: ; Tel.: +49-631-205-4061
| |
Collapse
|
4
|
Pinho RM, Garas LC, Huang BC, Weimer BC, Maga EA. Malnourishment affects gene expression along the length of the small intestine. Front Nutr 2022; 9:894640. [PMID: 36118759 PMCID: PMC9478944 DOI: 10.3389/fnut.2022.894640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Malnourishment is a risk factor for childhood mortality, jeopardizing the health of children by aggravating pneumonia/acute respiratory infections and diarrheal diseases. Malnourishment causes morphophysiological changes resulting in stunting and wasting that have long-lasting consequences such as cognitive deficit and metabolic dysfunction. Using a pig model of malnutrition, the interplay between the phenotypic data displayed by the malnourished animals, the gene expression pattern along the intestinal tract, microbiota composition of the intestinal contents, and hepatic metabolite concentrations from the same animals were correlated using a multi-omics approach. Samples from the duodenum, jejunum, and ileum of malnourished (protein and calorie-restricted diet) and full-fed (no dietary restrictions) piglets were subjected to RNA-seq. Gene co-expression analysis and phenotypic correlations were made with WGCNA, while the integration of transcriptome with microbiota composition and the hepatic metabolite profile was done using mixOmics. Malnourishment caused changes in tissue gene expression that influenced energetic balance, cell proliferation, nutrient absorption, and response to stress. Repression of antioxidant genes, including glutathione peroxidase, in coordination with induction of metal ion transporters corresponded to the hepatic metabolite changes. These data indicate oxidative stress in the intestine of malnourished animals. Furthermore, several of the phenotypes displayed by these animals could be explained by changes in gene expression.
Collapse
Affiliation(s)
- Raquel M. Pinho
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Raquel M. Pinho
| | - Lydia C. Garas
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - B. Carol Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Elizabeth A. Maga
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
Effect of ethanolic extract of rosella ( Hibiscus sabdariffa L.) on vital signs, kidney, and liver safety. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Summary
Introduction: Rosella (Hibiscus sabdariffa L) extract is often used as immune-stimulant because it contains flavonoids, especially anthocyanin and quercetin with antioxidant activities.
Objective: This study aimed to determine the safety of the rosella extract consumed in the form of capsules on the vital signs, haematologic parameters as well as kidney and liver function.
Methods: This research was conducted using clinical trial pre- and post-test design in healthy participants. There were 21 healthy participants (52% male, age ranged 8–45) consuming rosella capsules for thirty days, in a dose of 500 mg extract daily. Leukocytes, lymphocytes, blood urea nitrogen (BUN), serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT) and vital signs were consecutively evaluated on days 0, 31, and 45, respectively. The Wilcoxon and paired sample t-test were used to compare the parameters among the evaluated times.
Results: The result showed that no significant difference for all parameters among the three time points (p>0.05).
Conclusion: These findings suggested that the administration of ethanolic extract of rosella is potential safe and does not negatively affect the vital signs, haemoglobin, leukocytes, lymphocytes, BUN, SGOT, and SGPT.
Collapse
|
6
|
Carregosa D, Pinto C, Ávila-Gálvez MÁ, Bastos P, Berry D, Santos CN. A look beyond dietary (poly)phenols: The low molecular weight phenolic metabolites and their concentrations in human circulation. Compr Rev Food Sci Food Saf 2022; 21:3931-3962. [PMID: 36037277 DOI: 10.1111/1541-4337.13006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
A large number of epidemiological studies have shown that consumption of fruits, vegetables, and beverages rich in (poly)phenols promote numerous health benefits from cardiovascular to neurological diseases. Evidence on (poly)phenols has been applied mainly to flavonoids, yet the role of phenolic acids has been largely overlooked. Such phenolics present in food combine with those resulting from gut microbiota catabolism of flavonoids and chlorogenic acids and those produced by endogenous pathways, resulting in large concentrations of low molecular weight phenolic metabolites in human circulation. Independently of the origin, in human intervention studies using diets rich in (poly)phenols, a total of 137 low molecular weight phenolic metabolites have been detected and quantified in human circulation with largely unknown biological function. In this review, we will pinpoint two main aspects of the low molecular weight phenolic metabolites: (i) the microbiota responsible for their generation, and (ii) the analysis (quali- and quantitative) in human circulation and their respective pharmacokinetics. In doing so, we aim to drive scientific advances regarding the ubiquitous roles of low molecular weight phenolic metabolites using physiologically relevant concentrations and under (patho)physiologically relevant conditions in humans.
Collapse
Affiliation(s)
- Diogo Carregosa
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Catarina Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Paulo Bastos
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Cláudia Nunes Santos
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| |
Collapse
|
7
|
Gonçalves AC, Nunes AR, Flores-Félix JD, Alves G, Silva LR. Cherries and Blueberries-Based Beverages: Functional Foods with Antidiabetic and Immune Booster Properties. Molecules 2022; 27:3294. [PMID: 35630771 PMCID: PMC9145489 DOI: 10.3390/molecules27103294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Nowadays, it is largely accepted that the daily intake of fruits, vegetables, herbal products and derivatives is an added value in promoting human health, given their capacity to counteract oxidative stress markers and suppress uncontrolled pro-inflammatory responses. Given that, natural-based products seem to be a promising strategy to attenuate, or even mitigate, the development of chronic diseases, such as diabetes, and to boost the immune system. Among fruits, cherries and blueberries are nutrient-dense fruits that have been a target of many studies and interest given their richness in phenolic compounds and notable biological potential. In fact, research has already demonstrated that these fruits can be considered functional foods, and hence, their use in functional beverages, whose popularity is increasing worldwide, is not surprising and seem to be a promising and useful strategy. Therefore, the present review reinforces the idea that cherries and blueberries can be incorporated into new pharmaceutical products, smart foods, functional beverages, and nutraceuticals and be effective in preventing and/or treating diseases mediated by inflammatory mediators, reactive species, and free radicals.
Collapse
Affiliation(s)
- Ana C Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana R Nunes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC-Centre for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - José D Flores-Félix
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís R Silva
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI-IPG-Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
8
|
Qin S, He Z, Wu Y, Zeng C, Zheng Z, Zhang H, Lv C, Yuan Y, Wu H, Ye J, Liu Z, Shi M. Instant Dark Tea Alleviates Hyperlipidaemia in High-Fat Diet-Fed Rat: From Molecular Evidence to Redox Balance and Beyond. Front Nutr 2022; 9:819980. [PMID: 35223953 PMCID: PMC8875000 DOI: 10.3389/fnut.2022.819980] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
Instant dark tea (IDT) is a new product gaining increasing attention because it is convenient and can endow significant health benefit to consumers, which is partially attributed to its high concentration of functional ingredients. However, the molecular mechanism underlying its regulatory effect on hyperlipidaemia is rarely studied. In this study, we performed omics and molecular verification in high-fat diet (HFD)-fed rat, aiming to reveal the mechanism and provide molecular evidence. The results showed that the major bioactive components in IDT were include 237.9 mg/g total polysaccharides, 336.6 mg/g total polyphenols, and 46.9 mg/g EGCG. Rats fed with IDT (0.27–0.54 g/kg for 12 weeks) significantly reduced the body weight and TC, TG, LDL-C, blood glucose, and MDA and induced the level of serum HDL-C and also the levels of liver SOD, CAT, GSH-Px, and Nrf2, compared to HFD group. For molecular mechanism study, HIDT feeding had significant impact on the gene expressions of biomarkers in lipogenesis (FABP, CD36, SCD1, Cyp4a1, and Kcnn2), lipid oxidation (PPARγ), and glucose glycolysis (Gck and ENO2) in liver tissue. Moreover, gut microbiome study found that rats fed with IDT dramatically modified the gut microbial species at the family level, such as suppressing the increase abundance of Proteobacteria and Firmicutes induced by HFD. HIDT significantly boosted the relative composition of beneficial bacterium Akkermansia and Rikenellaceae_RC9_gut_group and decreased the relative abundance of the harmful bacterium Ruminococcaceae_UCG-005 and Ruminiclostridium_9, compared to HFD (p < 0.01). Correlation analysis between microbiome and animal indicators found that seven genera including Akkermansia, Clostridiales, Lachnospiraceae, Lachnospiraceae_UCG-010, Ruminiclostridium_9, Ruminococaceae-UCG-005, and Ruminocuccus_1 were found as potential biomarkers that were strongly correlated with oxidative stress and metabolism genes. For instance, Ruminococcaceae_UCG-005 was significantly correlated with body weight, TG, HDL-C, Nfr2, FABP3, SCD1, Cyp4a1, and Kcnn2. Collectively, the above data obtained in this study had provided the primary molecular evidence for the molecular mechanism and brought in novel insights based on omics for the regulatory effect of IDT on hyperlipidaemia.
Collapse
Affiliation(s)
- Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Si Qin
| | - Zhilan He
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuanjie Wu
- Hunan Tea Group Co. LTD, Changsha, China
| | - Chaoxi Zeng
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhibing Zheng
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haowei Zhang
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chenghao Lv
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yong Yuan
- Hunan Tea Group Co. LTD, Changsha, China
| | - Haoren Wu
- Hunan Tea Group Co. LTD, Changsha, China
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China
- Zhonghua Liu
| | - Meng Shi
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Meng Shi
| |
Collapse
|
9
|
Dini I. Bio Discarded from Waste to Resource. Foods 2021; 10:2652. [PMID: 34828933 PMCID: PMC8621767 DOI: 10.3390/foods10112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
10
|
Pahlke G, Ahlberg K, Oertel A, Janson‐Schaffer T, Grabher S, Mock H, Matros A, Marko D. Antioxidant Effects of Elderberry Anthocyanins in Human Colon Carcinoma Cells: A Study on Structure-Activity Relationships. Mol Nutr Food Res 2021; 65:e2100229. [PMID: 34212508 PMCID: PMC8459241 DOI: 10.1002/mnfr.202100229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/09/2021] [Indexed: 12/14/2022]
Abstract
SCOPE Glycosylation is a way to increase structure-stability of anthocyanins, yet compromises their bioactivity. The study investigates the antioxidant activity of purified cyanidin (Cy)-based anthocyanins and respective degradation products in Caco-2 clone C2BBe1 aiming to identify structure-activity relationships. RESULTS AND METHODS Cyanidin 3-O-glucoside (Cy-3-glc) and cyanidin 3-O-sambubioside (Cy-3-sam) proved to be most potent regarding antioxidant properties and protection against hydrogen peroxide (H2 O2 )-induced reactive oxygen species (ROS)-levels measured with the dichloro-fluorescein (DCF) assay. Cyanidin 3-O-sambubioside-5-O-glucoside (Cy-3-sam-5-glc) and cyanidin 3-O-rutinoside (Cy-3-rut) were less efficient and not protective, reflecting potential differences in uptake and/or degradation. Following ranking in antioxidant efficiency is suggested: (concentrations ≤10 × 10-6 M) Cy-3-glc ≥ Cy-3-sam > Cy-3-sam-5-glc ≈ Cy-3-rut ≈ Cy; (concentrations ≥50 × 10-6 M) Cy-3-glc ≈ Cy-3-sam ≥ Cy > Cy-3-sam-5-glc ≈ Cy-3-rut. Cy and protocatechuic acid (PCA) reduced ROS-levels as potent as the mono- and di-glycoside, whereas phloroglucinol aldehyde (PGA) displayed pro-oxidant properties. None of the degradation products protected from oxidative stress. Gene transcription analysis of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPx), heme-oxygenase-1 (HO-1), and glutamate-cysteine-ligase (γGCL) suggest no activation of nuclear factor erythroid 2-related factor 2 (Nrf2). CONCLUSION More complex residues and numbers of sugar moieties appear to be counterproductive for antioxidant activity. Other mechanisms than Nrf2-activation should be considered for protective effects.
Collapse
Affiliation(s)
- Gudrun Pahlke
- Department of Food Chemistry and ToxicologyUniversity of ViennaWaehringerstr. 38ViennaA‐1090Austria
| | - Katarina Ahlberg
- Department of Food Chemistry and ToxicologyUniversity of ViennaWaehringerstr. 38ViennaA‐1090Austria
| | - Anne Oertel
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK‐Gatersleben)Corrensstr. 3GaterslebenD‐06466Germany
- Present address:
University of Art and DesignNeuwerk 7Halle (Saale)D‐06108Germany
| | - Theresa Janson‐Schaffer
- Department of Food Chemistry and ToxicologyUniversity of ViennaWaehringerstr. 38ViennaA‐1090Austria
| | - Stephanie Grabher
- Department of Food Chemistry and ToxicologyUniversity of ViennaWaehringerstr. 38ViennaA‐1090Austria
| | - Hans‐Peter Mock
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK‐Gatersleben)Corrensstr. 3GaterslebenD‐06466Germany
| | - Andrea Matros
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK‐Gatersleben)Corrensstr. 3GaterslebenD‐06466Germany
- Present address:
School of AgricultureFood and WineUniversity of AdelaideWaite CampusUrrbraeSA5064Australia
| | - Doris Marko
- Department of Food Chemistry and ToxicologyUniversity of ViennaWaehringerstr. 38ViennaA‐1090Austria
| |
Collapse
|
11
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|