1
|
Mukai K, Qiu X, Takai Y, Yasuo S, Oshima Y, Shimasaki Y. Diurnal-Rhythmic Relationships between Physiological Parameters and Photosynthesis- and Antioxidant-Enzyme Genes Expression in the Raphidophyte Chattonella marina Complex. Antioxidants (Basel) 2024; 13:781. [PMID: 39061850 PMCID: PMC11274130 DOI: 10.3390/antiox13070781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Diurnal rhythms in physiological functions contribute to homeostasis in many organisms. Although relationships between molecular biology and diurnal rhythms have been well studied in model organisms like higher plants, those in harmful algal bloom species are poorly understood. Here we measured several physiological parameters and the expression patterns of photosynthesis-related and antioxidant-enzyme genes in the Chattonella marina complex to understand the biological meaning of diurnal rhythm. Under a light-dark cycle, Fv/Fm and expression of psbA, psbD, and 2-Cys prx showed significant increases in the light and decreases during the dark. These rhythms remained even under continuous dark conditions. DCMU suppressed the induction of psbA, psbD, and 2-Cys prx expression under both light regimes. Oxidative stress levels and H2O2 scavenging activities were relatively stable, and there was no significant correlation between H2O2 scavenging activities and antioxidant-enzyme gene expression. These results indicate that the Chattonella marina complex has developed mechanisms for efficient photosynthetic energy production in the light. Our results showed that this species has a diurnal rhythm and a biological clock. These phenomena are thought to contribute to the efficiency of physiological activities centered on photosynthesis and cell growth related to the diurnal vertical movement of this species.
Collapse
Affiliation(s)
- Koki Mukai
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 122-7 Nunoura, Tamanoura-cho, Goto, Nagasaki 853-0508, Japan
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.T.); (Y.O.)
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.T.); (Y.O.)
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.T.); (Y.O.)
| |
Collapse
|
2
|
Kalwani P, Rath D, Ballal A. Loss of 2-Cys-Prx affects cellular ultrastructure, disturbs redox poise and impairs photosynthesis in cyanobacteria. PLANT, CELL & ENVIRONMENT 2022; 45:2972-2986. [PMID: 35909079 DOI: 10.1111/pce.14412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
In a striking similarity to plant chloroplasts, the cyanobacterium Anabaena displays very low catalase activity, but expresses several peroxiredoxins (Prxs), including the typical 2-Cys-Prx (annotated as Alr4641), that detoxify H2 O2 . Due to the presence of multiple Prxs, the precise contribution of Alr4641 to the oxidative stress response of Anabaena is not well-defined. To unambiguously assess its in vivo function, the Alr4641 protein was knocked down using the CRISPRi approach in Anabaena PCC 7120. The knockdown strain (An-KD4641), which showed over 85% decrease in the content of Alr4641, was viable, but grew slower than the control strain (An-dCas9). An-KD4641 showed elevated levels of reactive oxygen species and the expression of several redox-responsive genes was analogous to that of An-dCas9 subjected to oxidative stress. The knockdown strain displayed reduced filament size, altered thylakoid ultrastructure, a marked drop in the ratio of phycocyanin to chlorophyll a and decreased photosynthetic parameters compared to An-dCas9. In comparison to the control strain, exposure to H2 O2 had a more severe effect on the photosynthetic parameters or survival of An-KD4641. Thus, in the absence of adequate catalase activity, 2-Cys-Prx appears to be the principal Prx responsible for maintaining redox homoeostasis in diverse photosynthetic systems ranging from chloroplasts to cyanobacteria.
Collapse
Affiliation(s)
- Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Devashish Rath
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
3
|
Cho K, Ueno M, Liang Y, Kim D, Oda T. Generation of Reactive Oxygen Species (ROS) by Harmful Algal Bloom (HAB)-Forming Phytoplankton and Their Potential Impact on Surrounding Living Organisms. Antioxidants (Basel) 2022; 11:206. [PMID: 35204089 PMCID: PMC8868398 DOI: 10.3390/antiox11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Most marine phytoplankton with relatively high ROS generation rates are categorized as harmful algal bloom (HAB)-forming species, among which Chattonella genera is the highest ROS-producing phytoplankton. In this review, we examined marine microalgae with ROS-producing activities, with focus on Chattonella genera. Several studies suggest that Chattonella produces superoxide via the activities of an enzyme similar to NADPH oxidase located on glycocalyx, a cell surface structure, while hydrogen peroxide is generated inside the cell by different pathways. Additionally, hydroxyl radical has been detected in Chattonella cell suspension. By the physical stimulation, such as passing through between the gill lamellas of fish, the glycocalyx is easily discharged from the flagellate cells and attached on the gill surface, where ROS are continuously produced, which might cause gill tissue damage and fish death. Comparative studies using several strains of Chattonella showed that ROS production rate and ichthyotoxicity of Chattonella is well correlated. Furthermore, significant levels of ROS have been reported in other raphidophytes and dinoflagellates, such as Cochlodinium polykrikoides and Karenia mikimotoi. Chattonella is the most extensively studied phytoplankton in terms of ROS production and its biological functions. Therefore, this review examined the potential ecophysiological roles of extracellular ROS production by marine microalgae in aquatic environment.
Collapse
Affiliation(s)
- Kichul Cho
- Department of Microbiology, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea;
| | - Mikinori Ueno
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.U.); (Y.L.)
| | - Yan Liang
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.U.); (Y.L.)
| | - Daekyung Kim
- Daegu Center, Korea Basic Science Institute (KBSI), Daegu 41566, Korea
| | - Tatsuya Oda
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.U.); (Y.L.)
| |
Collapse
|
4
|
Zhang C, Chen Q, Liu F, Liu Y, Wang Y, Chen G. Rapid detection of Chattonella marina by PCR combined with dot lateral flow strip. JOURNAL OF APPLIED PHYCOLOGY 2022; 34:449-460. [PMID: 35079200 PMCID: PMC8778489 DOI: 10.1007/s10811-021-02667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED In this study a novel technique referred to as PCR combined with dot lateral flow strip (PCDS) is proposed and its application to the detection of harmful microalgae was explored. For this purpose, using Chattonella marina as a test algal species, PCR targeting the D1-D2 region of large subunit ribosomal gene of this alga was performed with the tagged specific primers. The amplicons were then analyzed with the manually prepared dot lateral flow strip, and the strip could produce a test dot and a control dot that are naked-eye detectable, indicating the successful establishment of PCDS. The established PCDS assay does not require expensive instruments for the detection, and the results can be observed visually after adding 7.5 μL of PCR amplicons in combination with 92.5 μL of chromatography buffer to the sample pad of the strip for about 10 min. The PCR conditions were optimized to enhance the effectiveness of detection. The cross-reactivity test with 23 microalgae species, including Chattonella marina, showed good specificity of the PCDS. The detection limit of PCDS was 1.25 × 10-2 ng µL-1 for genomic DNA and 101 cells mL-1 for crude cell extracts, which can meet the detection needs. In summary, the PCDS proposed in this study has low cost, clear, and intuitive detection results and good specificity and sensitivity, providing a novel detection method for C. marina. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10811-021-02667-x.
Collapse
Affiliation(s)
- Chunyun Zhang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 264209 People’s Republic of China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 People’s Republic of China
| | - Qixin Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
| | - Fuguo Liu
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 264209 People’s Republic of China
| | - Yin Liu
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
| | - Yuanyuan Wang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
| | - Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 264209 People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Wenhua West Road, Weihai, 2# Shandong Province China
| |
Collapse
|
5
|
Superoxide Production by the Red Tide-Producing Chattonella marina Complex (Raphidophyceae) Correlates with Toxicity to Aquacultured Fishes. Antioxidants (Basel) 2021; 10:antiox10101635. [PMID: 34679769 PMCID: PMC8533342 DOI: 10.3390/antiox10101635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
The marine raphidophyte Chattonella marina complex forms red tides, causing heavy mortalities of aquacultured fishes in temperate coastal waters worldwide. The mechanism for Chattonella fish mortality remains unresolved. Although several toxic chemicals have been proposed as responsible for fish mortality, the cause is still unclear. In this study, we performed toxicity bioassays with red sea bream and yellowtail. We also measured biological parameters potentially related to ichthyotoxicity, such as cell size, superoxide (O2•−) production, and compositions of fatty acids and sugars, in up to eight Chattonella strains to investigate possible correlations with toxicity. There were significant differences in moribundity rates of fish and in all biological parameters among strains. One strain displayed no ichthyotoxicity even at high cell densities. Strains were categorized into three groups based on cell length, but this classification did not significantly correlate with ichthyotoxicity. O2•− production differed by a factor of more than 13 between strains at the late exponential growth phase. O2•− production was significantly correlated with ichthyotoxicity. Differences in fatty acid and sugar contents were not related to ichthyotoxicity. Our study supports the hypothesis that superoxide can directly or indirectly play an important role in the Chattonella-related mortality of aquacultured fishes.
Collapse
|