1
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
2
|
Li L, Zhang W, Sun Y, Zhang W, Lu M, Wang J, Jin Y, Xi Q. A clinical prognostic model of oxidative stress-related genes linked to tumor immune cell infiltration and the prognosis of ovarian cancer patients. Heliyon 2024; 10:e28442. [PMID: 38560253 PMCID: PMC10981114 DOI: 10.1016/j.heliyon.2024.e28442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Background According to statistics, ovarian cancer (OV) is the most prevalent type of gynecologic malignancy and has the highest mortality rate of all gynecologic tumors. Although several studies have shown that oxidative stress (OS) contributes significantly to the onset and progression of cancer, the role of OS in OV needs to be investigated further. Thus, it is critical to comprehend the function of OS-related genes in OV. Methods In this study, all data related to the transcriptome and clinical status of the patients were retrieved from "The Cancer Genome Atlas" (TCGA) and "Gene Expression Omnibus" (GEO) databases. Using the unsupervised cluster analysis technique, all patients with OV were classified into two different subtypes (categories) based on the OS gene. All hub genes were screened using the weighted gene co-expression network analysis (WGCNA). Since the hub genes and the differentially expressed genes (DEGs) in both categories were found to intersect, the univariate Cox regression analysis was implemented. A multivariate Cox analysis was also performed to construct a novel clinical prognosis model, which was validated using data from the GEO cohort. In addition, the relationship between risk score and immune cell infiltration level was evaluated using CIBERSORT. Finally, qRT-PCR was used to confirm the expression of the genes used to construct the model. Results Two subtypes of OS were obtained. The findings indicated that OS-C1 had a better survival outcome than OS-C2. The results of WGCNA yielded 112 hub genes. For univariate COX regression analyses, 49 OS-related trait genes were obtained. Finally, a clinical prognostic model containing two genes was constructed. This model could differentiate between patients with OV having varying years of survival in the TCGA and GEO cohorts. The model risk score was verified as an independent prognostic indicator. According to the results of CIBERSORT, many tumor-infiltrating immune cells were found to be significantly related to the risk score. Furthermore, the results revealed that patients with low-risk OV in the CTLA4 treatment group had a high likelihood of benefiting from immunotherapy. qRT-PCR results also showed that the expression of MARVELD1 and VSIG4 was high in the OV samples. Conclusions Analysis of the results suggested that the newly developed model, which contained two characteristic OS-related genes, could successfully predict the survival outcomes of all patients with OV. The findings of this study could offer valuable information and insights into the refinement of personalized therapy and immunotherapy for OV in the future.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Weiwei Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Yanjun Sun
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Weiling Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Gynecology, Nantong Geriatric Rehabilitation Hospital, Nantong, Jiangsu, 226001, China
| | - Mengmeng Lu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, Yancheng, Jiangsu, 224599, China
| | - Jiaqian Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Obstetrics and Gynecology, Qidong Maternal and Child Health Hospital, Nantong, Jiangsu, 226200, China
| | - Yunfeng Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Qinghua Xi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
3
|
Louisa M, Wanafri E, Arozal W, Sandhiutami NMD, Basalamah AM. Nanocurcumin preserves kidney function and haematology parameters in DMBA-induced ovarian cancer treated with cisplatin via its antioxidative and anti-inflammatory effect in rats. PHARMACEUTICAL BIOLOGY 2023; 61:298-305. [PMID: 36708211 PMCID: PMC9888479 DOI: 10.1080/13880209.2023.2166965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/25/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Cisplatin, as a first-line treatment for ovarian cancer, is associated with debilitating adverse effects, including nephrotoxic and haematotoxic effects. OBJECTIVE This study determines whether nanocurcumin, combined with cisplatin, would give additional benefit to kidney function and haematological parameters in rats with ovarian cancer. MATERIALS AND METHODS Twenty-five Wistar rats were divided into five untreated rats and 20-dimethylbenz(a)anthracene (DMBA)-induced ovarian cancer rats. The 20 ovarian cancer rats were divided into four treatment groups: vehicle, cisplatin, cisplatin-curcumin, and cisplatin-nanocurcumin. Cisplatin was given at the dose of 4 mg/kg BW once weekly, while curcumin or nanocurcumin was administered at 100 mg/kg BW daily for four weeks. At the end of treatment, we analysed kidney function, haematological parameters, and inflammatory and oxidative stress markers from plasma. RESULTS Nanocurcumin alleviates the increase in kidney function markers and abnormalities in haematological indices in rats treated with cisplatin. Compared to cisplatin-treated rats, plasma urea levels decreased from 66.4 to 47.7 mg/dL, creatinine levels lowered from 0.87 to 0.82 mg/dL, and neutrophil gelatinase-associated lipocalin (NGAL) levels declined from 8.51 to 3.59 mIU/mg protein. Furthermore, the therapy increased glutathione activities (from 2.02 to 3.23 U/µL), reduced lipid peroxidation (from 0.54 to 0.45 nmol/mL), and decreased plasma TNF-α (from 270.6 to 217.8 pg/mL). CONCLUSIONS Cisplatin with nanocurcumin in an ovarian cancer rat model may provide additional benefits as a preventive agent against renal impairment and cisplatin-induced haematological toxicity. However, further research is required to prove that using nanocurcumin for a more extended time would not affect its anticancer properties.
Collapse
Affiliation(s)
- Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Erico Wanafri
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | | |
Collapse
|
4
|
Tsuchimochi S, Wada-Hiraike O, Urano Y, Kukita A, Yamaguchi K, Honjo H, Taguchi A, Tanikawa M, Sone K, Mori-Uchino M, Tsuruga T, Oda K, Osuga Y. Characterization of a fluorescence imaging probe that exploits metabolic dependency of ovarian clear cell carcinoma. Sci Rep 2023; 13:20292. [PMID: 37985723 PMCID: PMC10662153 DOI: 10.1038/s41598-023-47637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The purpose of this study is to clarify the metabolic dependence of ovarian clear cell carcinoma (CCC) by comparing normal tissues and to examine the applicability of fluorescence imaging probe to exploit these metabolic differences. Enhanced glutathione synthesis was supported by the increased uptake of related metabolites and elevated expression levels of genes. Accumulation of intracellular iron and lipid peroxide, induction of cell death by inhibition of the glutathione synthesis pathway indicated that ferroptosis was induced. The activation of γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG), a fluorescent imaging probe that recognizes γ-glutamyl transferase, which is essential for the synthesis of glutathione, was investigated in fresh-frozen surgical specimens. gGlu-HMRG detected extremely strong fluorescent signals in the tumor lesions of CCC patients, compared to normal ovaries or endometrium. These results revealed that CCC occurs in the stressful and unique environment of free radical-rich endometrioma, and that glutathione metabolism is enhanced as an adaptation to oxidative stress. Furthermore, a modality that exploits these metabolic differences would be useful for distinguishing between CCC and normal tissues.
Collapse
Affiliation(s)
- Saki Tsuchimochi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan.
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
- CREST, Japan Agency for Medical Research and Development, Chiyoda, Tokyo, 100-0004, Japan
| | - Asako Kukita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kohei Yamaguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Harunori Honjo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Katsutoshi Oda
- Department of Integrated Genomics, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| |
Collapse
|
5
|
Guo D, Zhang S, Gao Y, Shi J, Wang X, Zhang Z, Zhang Y, Wang Y, Zhao K, Li M, Wang A, Wang P, Gou Y, Zhang M, Liu M, Zhang Y, Chen R, Sun J, Wang S, Wu X, Liang Z, Chen J, Lang J. Exploring the cellular and molecular differences between ovarian clear cell carcinoma and high-grade serous carcinoma using single-cell RNA sequencing and GEO gene expression signatures. Cell Biosci 2023; 13:139. [PMID: 37525249 PMCID: PMC10391916 DOI: 10.1186/s13578-023-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
The two most prevalent subtypes of epithelial ovarian carcinoma (EOC) are ovarian clear cell carcinoma (OCCC) and high-grade serous ovarian carcinoma (HGSC). Patients with OCCC have a poor prognosis than those with HGSC due to chemoresistance, implying the need for novel treatment target. In this study, we applied single-cell RNA sequencing (scRNA-seq) together with bulk RNA-seq data from the GEO (Gene Expression Omnibus) database (the GSE189553 dataset) to characterize and compare tumor heterogeneity and cell-level evolution between OCCC and HGSC samples. To begin, we found that the smaller proportion of an epithelial OCCC cell subset in the G2/M phase might explain OCCC chemoresistance. Second, we identified a possible pathogenic OCCC epithelial cell subcluster that overexpresses LEFTY1. Third, novel biomarkers separating OCCC from HGSC were discovered and subsequently validated on a wide scale using immunohistochemistry. Amine oxidase copper containing 1 (AOC1) was preferentially expressed in OCCC over HGSC, while S100 calcium-binding protein A2 (S100A2) was detected less frequently in OCCC than in HGSC. In addition, we discovered that metabolic pathways were enriched in the epithelial compartment of the OCCC samples. In vitro experiments verified that inhibition of oxidative phosphorylation or glycolysis pathways exerted direct antitumor effects on both OCCC and HGSC cells, while targeting glutamine metabolism or ferroptosis greatly attenuated chemosensitivity only in OCCC cells. Finally, to determine whether there were any variations in immune cell subsets between OCCC and HGSC, data from scRNA-seq and mass cytometry were pooled for analysis. In summary, our work provides the first holistic insights into the cellular and molecular distinctions between OCCC and HGSC and is a valuable source for discovering new targets to leverage in clinical treatments to improve the poor prognosis of patients with OCCC.
Collapse
Affiliation(s)
- Dan Guo
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sumei Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yike Gao
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jinghua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Xiaoxi Wang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixin Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yaran Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuming Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Kun Zhao
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Anqi Wang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pan Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanqin Gou
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Miao Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meiyu Liu
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuhan Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Rui Chen
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jian Sun
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Shu Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China.
| | - Xunyao Wu
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
6
|
Zhang J, Li Y, Zou J, Lai CT, Zeng T, Peng J, Zou WD, Cao B, Liu D, Zhu LY, Li H, Li YK. Comprehensive analysis of the glutathione S-transferase Mu (GSTM) gene family in ovarian cancer identifies prognostic and expression significance. Front Oncol 2022; 12:968547. [PMID: 35965498 PMCID: PMC9366399 DOI: 10.3389/fonc.2022.968547] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Background Ovarian cancer (OC) is one of the most common types of gynecologic tumor over the world. The Glutathione S-transferase Mu (GSTM) has five members, including GSTM1-5. These GSTMs is involved in cell metabolism and detoxification, but their role in OC remains unknown. Methods Data from multiple public databases associated with OC and GSTMs were collected. Expression, prognosis, function enrichment, immune infiltration, stemness index, and drug sensitivity analysis was utilized to identify the roles of GSTMs in OC progression. RT-qPCR analysis confirmed the effect of AICAR, AT-7519, PHA-793887 and PI-103 on the mRNA levels of GSTM3/4. Results GSTM1-5 were decreased in OC samples compared to normal ovary samples. GSTM1/5 were positively correlated with OC prognosis, but GSTM3 was negatively correlated with OC prognosis. Function enrichment analysis indicated GSTMs were involved in glutathione metabolism, drug metabolism, and drug resistance. Immune infiltration analysis indicated GSTM2/3/4 promoted immune escape in OC. GSTM5 was significantly correlated with OC stemness index. GSTM3/4 were remarkedly associated with OC chemoresistance, especially in AICAR, AT-7519, PHA-793887 and PI-103. Conclusion GSTM3 was negatively correlated with OC prognosis, and associated with OC chemoresistance and immune escape. This gene may serve as potential prognostic biomarkers and therapeutic target for OC patients.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou central hospital, Xiangya hospital Zhuzhou central south university, Central south university, Zhuzhou, China
| | - Yan Li
- Department of Assisted Reproductive Centre, Zhuzhou central hospital, Xiangya hospital Zhuzhou central south university, Central south university, Zhuzhou, China
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Chun-tian Lai
- Department of Assisted Reproductive Centre, Zhuzhou central hospital, Xiangya hospital Zhuzhou central south university, Central south university, Zhuzhou, China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Juan Peng
- Department of Assisted Reproductive Centre, Zhuzhou central hospital, Xiangya hospital Zhuzhou central south university, Central south university, Zhuzhou, China
| | - Wen-da Zou
- Department of Assisted Reproductive Centre, Zhuzhou central hospital, Xiangya hospital Zhuzhou central south university, Central south university, Zhuzhou, China
| | - Bei Cao
- Department of Assisted Reproductive Centre, Zhuzhou central hospital, Xiangya hospital Zhuzhou central south university, Central south university, Zhuzhou, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou central hospital, Xiangya hospital Zhuzhou central south university, Central south university, Zhuzhou, China
| | - Li-yu Zhu
- Department of Assisted Reproductive Centre, Zhuzhou central hospital, Xiangya hospital Zhuzhou central south university, Central south university, Zhuzhou, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou central hospital, Xiangya hospital Zhuzhou central south university, Central south university, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| | - Yu-kun Li
- Department of Assisted Reproductive Centre, Zhuzhou central hospital, Xiangya hospital Zhuzhou central south university, Central south university, Zhuzhou, China
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| |
Collapse
|
7
|
Murakami A, Amano T, Yoshino F, Kita H, Moritani S, Murakami T, Chano T. Retinol dehydrogenase 10 contributes to cancer stemness and intracellular carbohydrate storage in ovarian clear cell carcinomas. Cancer Biomark 2022; 34:673-679. [PMID: 35634847 DOI: 10.3233/cbm-210435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ovarian clear cell carcinomas (OCCCs) have been recurrent and refractory among the present treatments, so novel therapeutics are urgently needed. OBJECTIVE The present study accumulates the proof of concept to examine the feasibility of RDH10 as a therapeutic target for treating OCCCs. METHODS Immunohistochemically, RDH10 expression was evaluated in 111 primary epithelial ovarian cancers, including 55 OCCCs, 31 ovarian endometrioid carcinomas and 25 ovarian serous carcinomas. The spherogenecity provoked by RDH10 was evaluated in OCCC cells. To analyze whether RDH10 promotes carbohydrate storage via the vitamin A-gluconeogenesis pathway, phosphoenolpyruvate carboxykinase 1 (PCK1) protein levels and intracellular carbohydrate content were measured in response to modified RDH10 expression. RESULTS Abundant RDH10 was expressed specifically in OCCCs. RDH10 promoted spherogenecity and intracellular carbohydrate storage via modulation of PCK1 expression in OCCC cells. CONCLUSIONS In the present study, abundant RDH10 contributed to cancer cell stemness and intracellular carbohydrate storage in OCCCs. RDH10 is a potentially, new therapeutic candidate for treating OCCC cases.
Collapse
Affiliation(s)
- Atsushi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Fumi Yoshino
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroko Kita
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Suzuko Moritani
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Medical Genetics, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
8
|
Butler H, Saulat O, Guinn BA. Identification of biomarkers for the diagnosis and targets for therapy in patients with clear cell ovarian cancer: a systematic literature review. Carcinogenesis 2022; 43:183-189. [PMID: 35104328 PMCID: PMC9036986 DOI: 10.1093/carcin/bgac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 02/03/2023] Open
Abstract
Clear cell ovarian cancer (CCOC) is a rare type of epithelial cancer often resistant to platinum-based chemotherapy. Biomarkers for the diagnosis of CCOC, and targets for immunotherapy, both have the potential to improve outcomes for patients. Our review aims to determine whether any antigens already identified in the literature could fulfil this remit. PubMed, Medline, Web of Science, Scopus, Cochrane, CINAHL and EMBASE were searched and included all reported studies up until August 2021. Primary research articles on human adult females including at least 10 CCOC patients were included. Quality assurance was carried out using a modified version of the QUADAS-2 tool. Sensitivity, specificity and area under the curve were extracted from each included study by two independent reviewers. Twenty-three articles were included which identified 19 gene transcripts/proteins and one antibody, with reported sensitivities between 21% and 100% and specificities between 0% and 100% for expression in CCOC and differentiation from other epithelial ovarian cancer subtypes, benign gynaecological disease or normal tissue. Twelve studies identified biomarkers with a sensitivity and specificity above 80%. A panel of biomarkers consisting of IMP3, napsin A and hepatocyte nuclear factor 1 beta achieved the highest area under the curve of 0.954. This review demonstrates that there are promising candidate biomarkers for the diagnosis of CCOC, some of which are highly specific, and have the potential to act as targets for therapy. However, larger cohort studies are needed to validate these biomarkers and their potential use in clinical practice.
Collapse
Affiliation(s)
- Holly Butler
- Hull York Medical School, University of Hull, Hull, UK
| | - Omar Saulat
- Hull York Medical School, University of Hull, Hull, UK
| | - Barbara-ann Guinn
- To whom correspondence should be addressed: Tel: +44 (0)1482 466543;
| |
Collapse
|
9
|
Insights into the Role of Oxidative Stress in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8388258. [PMID: 34659640 PMCID: PMC8516553 DOI: 10.1155/2021/8388258] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress (OS) arises when the body is subjected to harmful endogenous or exogenous factors that overwhelm the antioxidant system. There is increasing evidence that OS is involved in a number of diseases, including ovarian cancer (OC). OC is the most lethal gynecological malignancy, and risk factors include genetic factors, age, infertility, nulliparity, microbial infections, obesity, smoking, etc. OS can promote the proliferation, metastasis, and therapy resistance of OC, while high levels of OS have cytotoxic effects and induce apoptosis in OC cells. This review focuses on the relationship between OS and the development of OC from four aspects: genetic alterations, signaling pathways, transcription factors, and the tumor microenvironment. Furthermore, strategies to target aberrant OS in OC are summarized and discussed, with a view to providing new ideas for clinical treatment.
Collapse
|