1
|
Tang H, Cai L, He X, Niu Z, Huang H, Hu W, Bian H, Huang H. Radiation-induced bystander effect and its clinical implications. Front Oncol 2023; 13:1124412. [PMID: 37091174 PMCID: PMC10113613 DOI: 10.3389/fonc.2023.1124412] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
For many years, targeted DNA damage caused by radiation has been considered the main cause of various biological effects. Based on this paradigm, any small amount of radiation is harmful to the organism. Epidemiological studies of Japanese atomic bomb survivors have proposed the linear-non-threshold model as the dominant standard in the field of radiation protection. However, there is increasing evidence that the linear-non-threshold model is not fully applicable to the biological effects caused by low dose radiation, and theories related to low dose radiation require further investigation. In addition to the cell damage caused by direct exposure, non-targeted effects, which are sometimes referred to as bystander effects, abscopal effects, genetic instability, etc., are another kind of significant effect related to low dose radiation. An understanding of this phenomenon is crucial for both basic biomedical research and clinical application. This article reviews recent studies on the bystander effect and summarizes the key findings in the field. Additionally, it offers a cross-sectional comparison of bystander effects caused by various radiation sources in different cell types, as well as an in-depth analysis of studies on the potential biological mechanisms of bystander effects. This review aims to present valuable information and provide new insights on the bystander effect to enlighten both radiobiologists and clinical radiologists searching for new ways to improve clinical treatments.
Collapse
Affiliation(s)
- Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Luwei Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zihe Niu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Haitong Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Huahui Bian
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| |
Collapse
|
2
|
Paradoxical Radiosensitizing Effect of Carnosic Acid on B16F10 Metastatic Melanoma Cells: A New Treatment Strategy. Antioxidants (Basel) 2022; 11:antiox11112166. [PMID: 36358539 PMCID: PMC9686564 DOI: 10.3390/antiox11112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Carnosic acid (CA) is a phenolic diterpene characterized by its high antioxidant activity; it is used in industrial, cosmetic, and nutritional applications. We evaluated the radioprotective capacity of CA on cells directly exposed to X-rays and non-irradiated cells that received signals from X-ray treated cells (radiation induced bystander effect, RIBE). The genoprotective capacity was studied by in vivo and in vitro micronucleus assays. Radioprotective capacity was evaluated by clonogenic cell survival, MTT, apoptosis and intracellular glutathione assays comparing radiosensitive cells (human prostate epithelium, PNT2) with radioresistant cells (murine metastatic melanoma, B16F10). CA was found to exhibit a genoprotective capacity in cells exposed to radiation (p < 0.001) and in RIBE (p < 0.01). In PNT2 cells, considered as normal cells in our study, CA achieved 97% cell survival after exposure to 20 Gy of X-rays, eliminating 67% of radiation-induced cell death (p < 0.001), decreasing apoptosis (p < 0.001), and increasing the GSH/GSSH ratio (p < 0.01). However, the administration of CA to B16F10 cells decreased cell survival by 32%, increased cell death by 200% (p < 0.001) compared to irradiated cells, and increased cell death by 100% (p < 0.001) in RIBE bystander cells (p < 0.01). Furthermore, it increased apoptosis (p < 0.001) and decreased the GSH/GSSG ratio (p < 0.01), expressing a paradoxical radiosensitizing effect in these cells. Knowing the potential mechanisms of action of substances such as CA could help to create new applications that would protect healthy cells and exclusively damage neoplastic cells, thus presenting a new desirable strategy for cancer patients in need of radiotherapy.
Collapse
|
3
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
4
|
Kim TH, Bormate KJ, Custodio RJP, Cheong JH, Lee BK, Kim HJ, Jung YS. Involvement of the adenosine A 1 receptor in the hypnotic effect of rosmarinic acid. Biomed Pharmacother 2022; 146:112483. [PMID: 34891112 DOI: 10.1016/j.biopha.2021.112483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Insomnia, the most common sleep disorder, is characterized by a longer sleep latency, greater sleep fragmentation, and consequent excessive daytime fatigue. Due to the various side effects of prescribed hypnotics, demand for new drugs is still high. Recent studies have suggested the adenosine receptor (AR) as a potential therapeutic target for insomnia, however, clinically useful hypnotics targeting AR are not yet available. In the present study, we evaluated the hypnotic effect of rosmarinic acid, a phenolic compound widely found in medicinal plants, through pentobarbital-induced sleep test, electroencephalography/electromyography (EEG/EMG), and immunohistochemistry in mice. The underlying mechanisms were assessed by pharmacological approach using 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and SCH5826, antagonists for A1R and A2AR, respectively. Receptor-binding assay and functional agonism were also performed. Our study provides a new evidence that rosmarinic acid has a direct binding activity (Ki = 14.21 ± 0.3 μM) and agonistic activity for A1R. We also found that rosmarinic acid significantly decreased sleep fragmentation and onset latency to NREM sleep, and these effects were abolished by DPCPX. The results from c-Fos immunostaining showed that rosmarinic acid decreased the neuronal activity in wake-promoting brain regions, such as the basal forebrain and the lateral hypothalamus, while increasing the neuronal activity in the ventrolateral preoptic nucleus, a sleep-promoting region; all these effects were significantly inhibited by DPCPX. Taken together, this study suggests that rosmarinic acid possesses novel activity as an A1R agonist and thereby exerts a hypnotic effect, and thus it may serve as a potential therapeutic agent for insomnia through targeting A1R.
Collapse
Affiliation(s)
- Tae-Ho Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Katrina Joy Bormate
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | | | - Jae Hoon Cheong
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Bo Kyung Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute in Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea.
| | - Yi-Sook Jung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
5
|
Alcaraz M, Olivares A, Achel DG, García-Gamuz JA, Castillo J, Alcaraz-Saura M. Genoprotective Effect of Some Flavonoids against Genotoxic Damage Induced by X-rays In Vivo: Relationship between Structure and Activity. Antioxidants (Basel) 2021; 11:antiox11010094. [PMID: 35052599 PMCID: PMC8773379 DOI: 10.3390/antiox11010094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Flavonoids constitute a group of polyphenolic compounds characterized by a common gamma-benzo- pyrone structure considered in numerous biological systems to possess antioxidant capacity. Among the different applications of flavonoids, its genoprotective capacity against damage induced by ionizing radiation stands out, which has been related to antioxidant activity and its chemical structure. In this study, we determined the frequency of appearance of micronucleus in vivo by means of the micronucleus assay. This was conducted in mice treated with different flavonoids before and after exposure to 470 mGy X-rays; thereafter, their bone marrow polychromatophilic erythrocytes were evaluated to establish the structural factors enhancing the observed genoprotective effect. Our results in vivo show that the presence of a monomeric flavan-3-ol type structure, with absence of carbonyl group in position C4 of ring C, absence of conjugation between the carbons bearing the C2 = C3 double bond and the said ring, presence of a catechol group in ring B and characteristic hydroxylation in positions 5 and 7 of ring A are the structural characteristics that determine the highest degree of genoprotection. Additionally, a certain degree of polymerization of this flavonoid monomer, but maintaining significant levels of monomers and dimers, contributes to increasing the degree of genoprotection in the animals studied at both times of their administration (before and after exposure to X-rays).
Collapse
Affiliation(s)
- Miguel Alcaraz
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
- Correspondence: ; Tel.: +34-868-883-601
| | - Amparo Olivares
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
| | - Daniel Gyingiri Achel
- Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Legon, Accra GE-257-0465, Ghana;
| | - José Antonio García-Gamuz
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
| | - Julián Castillo
- R&D Department, Iff Murcia Natural Ingredients, Site Plant: Nutrafur, Camino Viejo de Pliego, Km. 2, Box 182, 30820 Alcantarilla, Spain;
| | - Miguel Alcaraz-Saura
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
| |
Collapse
|
6
|
Boldura OM, Marc S, Otava G, Hutu I, Balta C, Tulcan C, Mircu C. Utilization of Rosmarinic and Ascorbic Acids for Maturation Culture Media in Order to Increase Sow Oocyte Quality Prior to IVF. Molecules 2021; 26:7215. [PMID: 34885797 PMCID: PMC8659116 DOI: 10.3390/molecules26237215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
The beneficial effect of antioxidant supplementation in maturation culture media of sow oocytes was evaluated by the expression quantification of apoptotic genes and the genes that ensure stability of germ cells during fertilization. The oocytes were cultivated for 44 h in conventional medium (C) or in medium supplemented with 105 µM rosmarinic acid (R) and 0.5 mM ascorbic acid (A) and classified into three quality classes by morphological observation from which the total RNA was isolated. The gene expression of Ptx3 and the apoptotic regulator p53, Bax and BCL-2 were evaluated by quantitative PCR technique. The decreased expression of the Bax gene in the A and R groups, compared to the control, indicates a protective role of antioxidants in the cells. Cell homeostasis was maintained, as reflected in the ratio of Bax/Bcl-2 in class I COCs (cumulus-oocyte complex) regardless of the experimental group, indicating minimum cellular stress. The expression of p53 genes was higher in all class III COC, but in A1 and R1 the expression was lower than in C1, and a similar Ptx-3 gene decreased significantly in groups A1, A2, A3 and R1 compared with control groups. Antioxidant supplementation showed beneficial effects on all morphological classes of pig COCs.
Collapse
Affiliation(s)
- Oana-Maria Boldura
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| | - Simona Marc
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| | - Gabriel Otava
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| | - Ioan Hutu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| | - Cornel Balta
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
| | - Camelia Tulcan
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| | - Calin Mircu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| |
Collapse
|