1
|
Anwardeen N, Naja K, Elrayess MA. Association between antioxidant metabolites and N-terminal fragment brain natriuretic peptides in insulin-resistant individuals. Cardiovasc Endocrinol Metab 2024; 13:e0303. [PMID: 38706534 PMCID: PMC11068140 DOI: 10.1097/xce.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Objectives Oxidative stress plays a pivotal role in the development of metabolic syndrome, including heart failure and insulin resistance. The N-terminal fragment of brain natriuretic peptide (NT-proBNP) has been associated with heightened oxidative stress in heart failure patients. Yet, its correlation with insulin resistance remains poorly understood. Our objective is to investigate the association between oxidative stress markers and NT-proBNP levels in insulin-resistant individuals. Methods In this cross-sectional study involving 393 participants from the Qatar Biobank, clinical and metabolic data were collected, and the association between NT-proBNP and 72 oxidative stress metabolites was compared between insulin-sensitive and insulin-resistant individuals. Results Our results showed significantly lower NT-proBNP levels in insulin-resistant individuals (median = 17 pg/ml; interquartile range = 10.3-29) when compared to their insulin-sensitive counterparts (median = 31 pg/ml; interquartile range = 19-57). Moreover, we revealed notable associations between NT-proBNP levels and antioxidant metabolic pathways, particularly those related to glutathione metabolism, in insulin-resistant, but not insulin-sensitive individuals. Conclusion The significant decrease in NT-proBNP observed in individuals with insulin resistance may be attributed to a direct or indirect enhancement in glutathione production, which is regarded as a compensatory mechanism against oxidative stress. This study could advance our understanding of the interplay between oxidative stress during insulin resistance and cardiovascular risk, which could lead to novel therapeutic approaches for managing cardiovascular diseases. Further investigations are needed to assess the practical utility of these potential metabolites and understand the causal nature of their association with NT-proBNP in the etiology of insulin resistance.
Collapse
|
2
|
Fikry H, Saleh LA, Mahmoud FA, Gawad SA, Abd-Alkhalek HA. CoQ10 targeted hippocampal ferroptosis in a status epilepticus rat model. Cell Tissue Res 2024; 396:371-397. [PMID: 38499882 PMCID: PMC11144258 DOI: 10.1007/s00441-024-03880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Faten A Mahmoud
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Sara Abdel Gawad
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Hadwa Ali Abd-Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| |
Collapse
|
3
|
Ahmadimoghaddam D, Talebi SS, Rahmani A, Zamanirafe M, Parvaneh E, Ranjbar A, Poorolajal J, Mehrpooya M. Prevention of contrast induced-acute kidney injury using coenzyme Q10 in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Eur J Clin Pharmacol 2023; 79:1341-1356. [PMID: 37524929 DOI: 10.1007/s00228-023-03546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE We assessed the potential effect of CoQ10 administration for the prevention of contrast induced-acute kidney injury (CI-AKI) in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI). METHODS One hundred fifty STEMI patients who were candidates for primary PCI, along with intravenous saline hydration, randomly received a placebo or CoQ10. CoQ10 was administrated orally, 400 mg before the procedure and 200 mg twice daily after the procedure for three consecutive days. Serum creatinine concentration and corresponding creatinine clearance (estimated by the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation) were measured at baseline and 24, 48, and 72 h after primary PCI. Furthermore, the serum level of superoxide dismutase (SOD), total antioxidant capacity (TAC), and malondialdehyde (MDA) was measured before and 72 h after primary PCI. RESULTS The mean serum creatinine concentration before contrast administration was similar in the two groups (0.98 ± 0.08 versus 0.99 ± 0.09 mg/dL). While in both study groups, compared to baseline, the mean serum creatinine concentration increased at 48 and 72 h after contrast exposure, the CoQ10 group showed a lower serum creatinine concentration than the placebo group (P-value = 0.017 and 0.004, respectively). However, comparing the mean values of creatinine clearance between the groups at the study time points did not demonstrate a statistically significant difference. CI-AKI, defined as a > 25% or 0.5 mg/dL increase in baseline serum creatinine concentration, occurred in 8.00% of the cases in the CoQ10 group versus 20.00% in the placebo group (P-value = 0.034). Furthermore, at 72 h, the CoQ10-treated group exhibited higher serum levels of SOD and TAC and a lower MDA level than the placebo-treated group. CONCLUSIONS Our research's findings proposed CoQ10 supplementation as an adjuvant to saline hydration as a preventive approach against CI-AKI. TRIAL REGISTRATION The trial was registered at Iranian Registry of Clinical Trials ( https://www.irct.ir/trial/60435 , identifier code: IRCT20120215009014N414). Registration date: 2021-12-29.
Collapse
Affiliation(s)
- Davoud Ahmadimoghaddam
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Saman Talebi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ayesheh Rahmani
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Ave, Hamadan, 6517838678, Iran
| | - Maryam Zamanirafe
- Medical Faculty, Hamadan University of Medical Science, Hamadan, Iran
| | - Erfan Parvaneh
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jalal Poorolajal
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Ave, Hamadan, 6517838678, Iran.
| |
Collapse
|
4
|
Zhao S, Wu W, Liao J, Zhang X, Shen M, Li X, Lin Q, Cao C. Molecular mechanisms underlying the renal protective effects of coenzyme Q10 in acute kidney injury. Cell Mol Biol Lett 2022; 27:57. [PMID: 35869439 PMCID: PMC9308331 DOI: 10.1186/s11658-022-00361-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractCoenzyme Q10 (CoQ10), an endogenous antioxidant, has been reported frequently to exert an outstanding protective effect on multiple organ injury, including acute kidney injury (AKI). In this study, we aim to summarize all the current evidence of the protective action of CoQ10 against AKI as there are presently no relevant reviews in the literature. After a systematic search, 20 eligible studies, either clinical trials or experimental studies, were included and further reviewed. CoQ10 treatment exhibited a potent renal protective effect on various types of AKI, such as AKI induced by drugs (e.g., ochratoxin A, cisplatin, gentamicin, L-NAME, and nonsteroidal anti-inflammatory drug), extracorporeal shock wave lithotripsy (ESWL), sepsis, contrast media, and ischemia–reperfusion injury. The renal protective role of CoQ10 against AKI might be mediated by the antiperoxidative, anti-apoptotic, and anti-inflammatory potential of CoQ10. The molecular mechanisms for the protective effects of CoQ10 might be attributed to the regulation of multiple essential genes (e.g., caspase-3, p53, and PON1) and signaling cascades (e.g., Nrf2/HO-1 pathway). This review highlights that CoQ10 may be a potential strategy in the treatment of AKI.
Collapse
|
5
|
Aggarwal R, Potel KN, McFalls EO, Butterick TA, Kelly RF. Novel Therapeutic Approaches Enhance PGC1-alpha to Reduce Oxidant Stress-Inflammatory Signaling and Improve Functional Recovery in Hibernating Myocardium. Antioxidants (Basel) 2022; 11:2155. [PMID: 36358527 PMCID: PMC9686496 DOI: 10.3390/antiox11112155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/02/2023] Open
Abstract
Ischemic heart disease affects millions of people around the world. Current treatment options, including coronary artery bypass grafting, do not result in full functional recovery, highlighting the need for novel adjunctive therapeutic approaches. Hibernation describes the myocardial response to prolonged ischemia and involves a set of complex cytoprotective metabolic and functional adaptations. PGC1-alpha, a key regulator of mitochondrial energy metabolism and inhibitor of oxidant-stress-inflammatory signaling, is known to be downregulated in hibernating myocardium. PGC1-alpha is a critical component of cellular stress responses and links cellular metabolism with inflammation in the ischemic heart. While beneficial in the acute setting, a chronic state of hibernation can be associated with self-perpetuating oxidant stress-inflammatory signaling which leads to tissue injury. It is likely that incomplete functional recovery following revascularization of chronically ischemic myocardium is due to persistence of metabolic changes as well as prooxidant and proinflammatory signaling. Enhancement of PGC1-alpha signaling has been proposed as a possible way to improve functional recovery in patients with ischemic heart disease. Adjunctive mesenchymal stem cell therapy has been shown to induce PGC1-alpha signaling in hibernating myocardium and could help improve clinical outcomes for patients undergoing bypass surgery.
Collapse
Affiliation(s)
- Rishav Aggarwal
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Koray N. Potel
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Edward O. McFalls
- Division of Cardiology, Richmond VA Medical Center, Richmond, VA 23249-4915, USA
| | - Tammy A. Butterick
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Research, Center for Veterans Research and Education, Minneapolis, MN 55417, USA
| | - Rosemary F. Kelly
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Olson KR, Clear KJ, Derry PJ, Gao Y, Ma Z, Wu G, Kent TA, Straub KD. Coenzyme Q 10 and related quinones oxidize H 2S to polysulfides and thiosulfate. Free Radic Biol Med 2022; 182:119-131. [PMID: 35202787 DOI: 10.1016/j.freeradbiomed.2022.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022]
Abstract
In the canonical pathway for mitochondrial H2S oxidation electrons are transferred from sulfide:quinone oxidoreductase (SQR) to complex III via ubiquinone (CoQ10). We previously observed that a number of quinones directly oxidize H2S and we hypothesize that CoQ10 may have similar properties. Here we examine H2S oxidation by CoQ10 and more hydrophilic, truncated forms, CoQ1 and CoQ0, in buffer using H2S and polysulfide fluorophores (AzMC and SSP4), silver nanoparticles to measure thiosulfate (H2S2O3), mass spectrometry to identify polysulfides and O2-sensitive optodes to measure O2 consumption. We show that all three quinones concentration-dependently catalyze the oxidization of H2S to polysulfides and thiosulfate in buffer with the potency CoQ0>CoQ1>CoQ10 and that CoQ0 specifically oxidizes H2S to per-polysulfides, H2S2,3,4. These reactions consume and require oxygen and are augmented by addition of SOD suggesting that the quinones, not superoxide, oxidize H2S. Related quinones, MitoQ, menadione and idebenone, oxidize H2S in similar reactions. Exogenous CoQ0 decreases cellular H2S and increases polysulfides and thiosulfate production and this is also O2-dependent, suggesting that the quinone has similar effects on sulfur metabolism in cells. Collectively, these results suggest an additional endogenous mechanism for H2S metabolism and a potential therapeutic approach in H2S-related metabolic disorders.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Kasey J Clear
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN, 46615, USA
| | - Paul J Derry
- Department of Internal Medicine, University of Texas - McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Yan Gao
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA
| | - Zhilin Ma
- Indiana University School of Medicine - South Bend Center, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gang Wu
- Department of Internal Medicine, University of Texas - McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA; Department of Chemistry, Rice University, Houston, TX, 77005, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, 6560 Fannin Street, Houston, TX, 77030, United States
| | - Karl D Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, AR, 72205, USA; Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| |
Collapse
|
7
|
Buse GL, Matot I. Pro-Con Debate: Cardiac Troponin Measurement as Part of Routine Follow-up of Myocardial Damage Following Noncardiac Surgery. Anesth Analg 2022; 134:257-265. [PMID: 35030121 DOI: 10.1213/ane.0000000000005714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Elevated troponin levels within 3 days of surgery, independent of the presence of symptoms, are strongly linked to increased risk of short- and long-term morbidity and mortality. However, the value of screening with troponin measurements is controversial. The Canadian Cardiovascular Society guidelines on perioperative cardiac risk assessment and management for patients who undergo noncardiac surgery recommends measuring daily troponin for 48 to 72 hours after surgery in high-risk patients. Nevertheless, others doubt this recommendation, in part because postoperative elevated levels of troponin describe very little in terms of disease or event-specific pathogenesis and etiology, and thus, tailoring an intervention remains a challenge. This Pro-Con debate offers evidence-based data to stimulate physician understanding of daily practice and its significance in this matter, and assist in determining whether to use (Pro) or not to use (Con) this surveillance.
Collapse
Affiliation(s)
- Giovanna Lurati Buse
- From the Anesthesiology Department, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Idit Matot
- Division of Anesthesia, Intensive Care, and Pain Management, Tel-Aviv Medical Center, Tel Aviv Medical School, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
8
|
Rabanal-Ruiz Y, Llanos-González E, Alcain FJ. The Use of Coenzyme Q10 in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10050755. [PMID: 34068578 PMCID: PMC8151454 DOI: 10.3390/antiox10050755] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
CoQ10 is an endogenous antioxidant produced in all cells that plays an essential role in energy metabolism and antioxidant protection. CoQ10 distribution is not uniform among different organs, and the highest concentration is observed in the heart, though its levels decrease with age. Advanced age is the major risk factor for cardiovascular disease and endothelial dysfunction triggered by oxidative stress that impairs mitochondrial bioenergetic and reduces NO bioavailability, thus affecting vasodilatation. The rationale of the use of CoQ10 in cardiovascular diseases is that the loss of contractile function due to an energy depletion status in the mitochondria and reduced levels of NO for vasodilatation has been associated with low endogenous CoQ10 levels. Clinical evidence shows that CoQ10 supplementation for prolonged periods is safe, well-tolerated and significantly increases the concentration of CoQ10 in plasma up to 3–5 µg/mL. CoQ10 supplementation reduces oxidative stress and mortality from cardiovascular causes and improves clinical outcome in patients undergoing coronary artery bypass graft surgery, prevents the accumulation of oxLDL in arteries, decreases vascular stiffness and hypertension, improves endothelial dysfunction by reducing the source of ROS in the vascular system and increases the NO levels for vasodilation.
Collapse
Affiliation(s)
- Yoana Rabanal-Ruiz
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Emilio Llanos-González
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Francisco Javier Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence:
| |
Collapse
|