1
|
Zhang S, Wang X, Zhao T, Zhou C. Effector CLas0185 targets methionine sulphoxide reductase B1 of Citrus sinensis to promote multiplication of 'Candidatus Liberibacter asiaticus' via enhancing enzymatic activity of ascorbate peroxidase 1. MOLECULAR PLANT PATHOLOGY 2024; 25:e70002. [PMID: 39215961 PMCID: PMC11365454 DOI: 10.1111/mpp.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Citrus huanglongbing (HLB) has been causing enormous damage to the global citrus industry. As the main causal agent, 'Candidatus Liberibacter asiaticus' (CLas) delivers a set of effectors to modulate host responses, while the modes of action adopted remain largely unclear. Here, we demonstrated that CLIBASIA_00185 (CLas0185) could attenuate reactive oxygen species (ROS)-mediated cell death in Nicotiana benthamiana. Transgenic expression of CLas0185 in Citrus sinensis 'Wanjincheng' enhanced plant susceptibility to CLas. We found that methionine sulphoxide reductase B1 (CsMsrB1) was targeted by the effector, and its abundance was elevated in CLas0185-transgenic citrus plants. Their interaction promoted CLas proliferation. We then determined that CsMsrB1 sustained redox state and enzymatic activity of ascorbate peroxidase 1 (CsAPX1) under oxidative stress. The latter reduced H2O2 accumulation and was associated with host susceptibility to CLas infection. Consistently, citrus plants expressing CLas0185 and CsMsrB1 conferred enhanced APX activity and decreased H2O2 content. Taken together, these findings revealed how CLas0185 benefits CLas colonization by targeting CsMsrB1, which facilitated the antioxidant activity and depressed ROS during pathogen infection.
Collapse
Affiliation(s)
- Shushe Zhang
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsChinese Academy of Agriculture Sciences, Institute of Plant ProtectionBeijingChina
| | - Xuefeng Wang
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsChinese Academy of Agriculture Sciences, Institute of Plant ProtectionBeijingChina
| | - Changyong Zhou
- Citrus Research InstituteSouthwest University, National Citrus Engineering Research CenterChongqingChina
| |
Collapse
|
2
|
Valdivia-Culqui JE, Maicelo-Quintana JL, Cayo-Colca IS, Medina-Mendoza M, Castro-Alayo EM, Balcázar-Zumaeta CR. Oleogel Systems for Chocolate Production: A Systematic Review. Gels 2024; 10:561. [PMID: 39330164 PMCID: PMC11431030 DOI: 10.3390/gels10090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
In response to the growing demand for healthier food options, this review explores advances in oleogel systems as an innovative solution to reduce saturated fats in chocolates. Although appreciated for its flavor and texture, chocolate is high in calories, mainly due to cocoa butter (CB), which is rich in saturated fats. Oleogels, three-dimensional structures formed by structuring agents in edible oils, stand out in terms of mimicking saturated fats' physical and sensory properties without compromising the quality of chocolate. This study reviews how oleogels could improve chocolate's stability and sensory quality, exploring the potential of pectin-rich agro-industrial by-products as sustainable alternatives. It also explores the need for physicochemical evaluations of both oleogel and oleogel-based chocolate.
Collapse
Affiliation(s)
- Jheniffer E Valdivia-Culqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Jorge L Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Ilse S Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Efraín M Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - César R Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
- Programa de Doctorado en Ciencias Agrarias, Escuela de Posgrado, Universidad Nacional de Piura, Jr. Tacna 748, Piura 20002, Peru
| |
Collapse
|
3
|
Xiao L, Jiang G, Lai H, Duan X, Yan H, Chen S, Chen Z, Duan X. Study on a Mechanism of Improving MaAPX1 Protein Activity by Mutating Methionine to Lysine. Antioxidants (Basel) 2024; 13:843. [PMID: 39061911 PMCID: PMC11273533 DOI: 10.3390/antiox13070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Ascorbate peroxidases (APXs) are key components of the ascorbate-glytathione cycle, which plays an important role in removing excess reactive oxygen species (ROS) in plants. Herein, MaAPX1 was verified as being involved in the ripening and senescence of banana fruit, exhibiting responsiveness to the accumulation of ROS and the oxidation of proteins. Site-directed mutation was applied to explore the mechanism of MaAPX1 activity changes. We found that the 32-site cysteine (Cys, C) served as a potential S-nitrosylation site. The mutant MaAPX1C32S activity was decreased significantly when Cys32 was mutated to serine (Ser, S). Intriguingly, the neighboring conserved 36-site methionine (Met, M), which is adjacent to Cys32, displayed an enzyme activity that was approximately five times higher than that of the wild-type MaAPX1 when mutated to lysine (Lys, K). Utilizing LC-MS/MS spectroscopy coupled with stopped-flow analysis showed that the enhanced MaAPX1M36K activity might be due to the increased S-nitrosylation level of Cys32 and the promotion of intermediate (compound I, the first intermediate product of the reaction of APX with H2O2) production. Molecular docking simulations showed that the S-N bond between Cys32 and Lys36 in MaAPX1M36K might have a function in protecting the thiol of Cys32 from oxidation. MaAPX1M36K, a promising mutant, possesses immense potential for improving the antioxidant capabilities of APX in the realm of bioengineering technology research.
Collapse
Affiliation(s)
- Lu Xiao
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guoxiang Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
| | - Hongmei Lai
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
| | - Xiaoyan Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
| | - Huiling Yan
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Shaoge Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
| | - Zexin Chen
- Accurate International Biotechnology Co., Ltd., Guangzhou 510535, China;
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
| |
Collapse
|
4
|
Shen X, Yang Z, Dai X, Feng W, Li P, Chen Y. Calcium Hexacyanoferrate Nanozyme Enhances Plant Stress Resistance by Oxidative Stress Alleviation and Heavy Metal Removal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402745. [PMID: 38856156 DOI: 10.1002/adma.202402745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Oxidative damage, exacerbated by the excessive accumulation of reactive oxygen species (ROS), profoundly inhibits both crop growth and yield. Herein, a biocompatible nanozyme, calcium hexacyanoferrate nanoparticles (CaHCF NPs), targeting ROS is developed, to mitigate oxidative damage and sequestrate heavy metal ions during plant growth. Uniquely, CaHCF NPs feature multifaced enzyme-like activities, involving superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase, thiol peroxidase, and ascorbate peroxidase, which enable them to neutralize excessive ROS. Furthermore, CaHCF NPs promote calcium-cadmium exchange process, diminishing the uptake of heavy metals. Importantly, 120 µg mL-1 of CaHCF NPs alleviate the inhibitory effects of hydrogen peroxide and cadmium chloride on Arabidopsis and tomato. The activities of SOD, POD, and CAT increase by 46.2%, 74.4%, and 48.3%, respectively, meanwhile the glutathione level rises by 72.4% in Arabidopsis under cadmium stress. Moreover, CaHCF NPs boost the expression of genes associated with antioxidation, heavy metal detoxification, nutrient transport, and stress resistance. These findings unveil the significant potential of nanoplatforms equipped with nanozymes in alleviating oxidative stress in plants, which not only regulate crop growth but also substantially ameliorate yield and quality, heralding a new era in agricultural nanotechnology.
Collapse
Affiliation(s)
- Xiu Shen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhenyu Yang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ping Li
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
5
|
Corpas FJ, González-Gordo S, Palma JM. Ascorbate peroxidase in fruits and modulation of its activity by reactive species. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2716-2732. [PMID: 38442039 PMCID: PMC11066807 DOI: 10.1093/jxb/erae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Ascorbate peroxidase (APX) is one of the enzymes of the ascorbate-glutathione cycle and is the key enzyme that breaks down H2O2 with the aid of ascorbate as an electron source. APX is present in all photosynthetic eukaryotes from algae to higher plants and, at the cellular level, it is localized in all subcellular compartments where H2O2 is generated, including the apoplast, cytosol, plastids, mitochondria, and peroxisomes, either in soluble form or attached to the organelle membranes. APX activity can be modulated by various post-translational modifications including tyrosine nitration, S-nitrosation, persulfidation, and S-sulfenylation. This allows the connection of H2O2 metabolism with other relevant signaling molecules such as NO and H2S, thus building a complex coordination system. In both climacteric and non-climacteric fruits, APX plays a key role during the ripening process and during post-harvest, since it participates in the regulation of both H2O2 and ascorbate levels affecting fruit quality. Currently, the exogenous application of molecules such as NO, H2S, H2O2, and, more recently, melatonin is seen as a new alternative to maintain and extend the shelf life and quality of fruits because they can modulate APX activity as well as other antioxidant systems. Therefore, these molecules are being considered as new biotechnological tools to improve crop quality in the horticultural industry.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
6
|
Jiao C, Wei Y, Dong J. PpMYB105 inhibits chilling injury by regulating PpMsrA1 in peach fruit. PLANT CELL REPORTS 2023; 42:1557-1569. [PMID: 37460813 DOI: 10.1007/s00299-023-03047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 09/17/2023]
Abstract
KEY MESSAGE MeJA supplementation enhanced the chilling tolerance and gene expression of PpMsrA1. PpMYB105 protein positively regulated the PpMsrA1 promoter. PpMYB105 mediated the MeJA-boosted chilling tolerance by regulating PpMsrA1. Cold storage can maintain the quality of postharvest fruit. However, peaches easily suffer from chilling injury (CI) during cold storage, leading to economic loss. Results showed that methyl jasmonate (MeJA) supplementation reduced the CI severity, and enhanced the gene expression of methionine sulfoxide reductase A1 (PpMsrA1). It was found that MeJA application elevated the MsrA activity and methionine (Met) content, and reduced the methionine-S-sulfoxide (Met-S-SO) content and reactive oxygen species (ROS) production afterwards. Moreover, PpMYB105 could activate the transcription of PpMsrA1 by binding to the MYB binding element in its promoter. The gene expression of PpMYB105 was up-regulated by MeJA application. Overexpression of PpMYB105 in tomatoes enhanced the chilling tolerance and gene expression of SlMsrA1. Virus-induced gene silencing of PpMYB105 in peaches resulted in the increase in CI severity and the decrease in gene expression of PpMsrA1. Thus, PpMYB105 was involved in the MeJA-boosted chilling tolerance by regulating PpMsrA1.
Collapse
Affiliation(s)
- Caifeng Jiao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Yancheng Wei
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Jing Dong
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| |
Collapse
|
7
|
Li S. Novel insight into functions of ascorbate peroxidase in higher plants: More than a simple antioxidant enzyme. Redox Biol 2023; 64:102789. [PMID: 37352686 DOI: 10.1016/j.redox.2023.102789] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
As plants are sessile organisms, they are inevitably exposed to a variety of environmental stimuli that trigger rapid changes in the generation and disposal of reactive oxygen species such as hydrogen peroxide (H2O2). A major H2O2 scavenging system in plant cells is the ascorbate-glutathione cycle, in which ascorbate peroxidase (APX) catalyzes the conversion of H2O2 into water employing ascorbate as specific electron donor. In higher plants, distinct APX isoforms can occur in multiple subcellular compartments, including chloroplasts, mitochondria, and peroxisomes and the cytosol, to modulate organellar and cellular levels of H2O2. It is well established that APX plays crucial roles in protecting plant cells against diverse environmental stresses, as well as in plant growth and development. Apart from ascorbate, recently, APXs have been found to have a broader substrate specificity and possess chaperone activity, hence participating various biological processes. In this review, we describe the antioxidant properties of APXs and highlight their novel roles beyond 'ascorbate peroxidases'.
Collapse
Affiliation(s)
- Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
8
|
Min D, Li F, Ali M, Liu J, Fu X, Song Y, Ding J, Li X, Ji N, Zhang X. Interaction of methionine sulfoxide reductase B5 with SlMYC2 stimulates the transcription of MeJA-mediated autophagy-related genes in tomato fruit. HORTICULTURE RESEARCH 2023; 10:uhad012. [PMID: 36968182 PMCID: PMC10031729 DOI: 10.1093/hr/uhad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Methyl jasmonate (MeJA) has been shown to induce autophagy in various plant stress responses and metabolic pathways. MYC2 is involved in MeJA-mediated postharvest fruit biological metabolism, but it is unclear how it affects MeJA-induced fruit autophagy. In this study, we noticed that silencing SlMYC2 significantly reduced the increase in autophagy-related genes (SlATGs) expression induced by MeJA. SlMYC2 could also bind to the promoters of several SlATGs, including SlATG13a, SlATG13b, SlATG18a, and SlATG18h, and activate their transcript levels. Moreover, SlMsrB5, a methionine sulfoxide reductase, could interact with SlMYC2. Methionine oxidation in SlMYC2 and mimicking sulfoxidation in SlMYC2 by mutation of methionine-542 to glutamine reduced the DNA-binding ability and transcriptional activity of SlMYC2, respectively. SlMsrB5 partially repaired oxidized SlMYC2 and restored its DNA-binding ability. On the other hand, silencing SlMsrB5 inhibited the transcript levels of SlMYC2-targeted genes (SlATG13a, SlATG13b, SlATG18a, and SlATG18h). Similarly, dual-luciferase reporter (DLR) analysis revealed that SlMsrB5-SlMYC2 interaction significantly increased the ability of SlMYC2-mediated transcriptional activation of SlATG13a, SlATG13b, SlATG18a, and SlATG18h. These findings demonstrate that SlMsrB5-mediated cyclic oxidation/reduction of methionine in SlMYC2 influences SlATGs expression. Collectively, these findings reveal the mechanism of SlMYC2 in SlATGs transcriptional regulation, providing insight into the mechanism of MeJA-mediated postharvest fruit quality regulation.
Collapse
Affiliation(s)
| | | | - Maratab Ali
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Jiong Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xiaodong Fu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yanan Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jun Ding
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xiaoan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Nana Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | | |
Collapse
|
9
|
Zhu L, Chen L, Wu C, Shan W, Cai D, Lin Z, Wei W, Chen J, Lu W, Kuang J. Methionine oxidation and reduction of the ethylene signaling component MaEIL9 are involved in banana fruit ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:150-166. [PMID: 36103229 DOI: 10.1111/jipb.13363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The ethylene insensitive 3/ethylene insensitive 3-like (EIN3/EIL) plays an indispensable role in fruit ripening. However, the regulatory mechanism that links post-translational modification of EIN3/EIL to fruit ripening is largely unknown. Here, we studied the expression of 13 MaEIL genes during banana fruit ripening, among which MaEIL9 displayed higher enhancement particularly in the ripening stage. Consistent with its transcript pattern, abundance of MaEIL9 protein gradually increased during the ripening process, with maximal enhancement in the ripening. DNA affinity purification (DAP)-seq analysis revealed that MaEIL9 directly targets a subset of genes related to fruit ripening, such as the starch hydrolytic genes MaAMY3D and MaBAM1. Stably overexpressing MaEIL9 in tomato fruit hastened fruit ripening, whereas transiently silencing this gene in banana fruit retarded the ripening process, supporting a positive role of MaEIL9 in fruit ripening. Moreover, oxidation of methionines (Met-129, Met-130, and Met-282) in MaEIL9 resulted in the loss of its DNA-binding capacity and transcriptional activation activity. Importantly, we identified MaEIL9 as a potential substrate protein of methionine sulfoxide reductase A MaMsrA4, and oxidation of Met-129, Met-130, and Met-282 in MaEIL9 could be restored by MaMsrA4. Collectively, our findings reveal a novel regulatory network controlling banana fruit ripening, which involves MaMsrA4-mediated redox regulation of the ethylene signaling component MaEIL9.
Collapse
Affiliation(s)
- Lisha Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zengxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Hazra A, Varshney V, Verma P, Kamble NU, Ghosh S, Achary RK, Gautam S, Majee M. Methionine sulfoxide reductase B5 plays a key role in preserving seed vigor and longevity in rice (Oryza sativa). THE NEW PHYTOLOGIST 2022; 236:1042-1060. [PMID: 35909309 DOI: 10.1111/nph.18412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Oxidation of methionine leads to the formation of methionine S-sulfoxide and methionine R-sulfoxide, which can be reverted by two types of methionine sulfoxide reductase (MSR): MSRA and MSRB. Though the role of MSR enzymes has been elucidated in various physiological processes, the regulation and role of MSR in seeds remains poorly understood. In this study, through molecular, biochemical, and genetic studies using seed-specific overexpression and RNAi lines of OsMSRB5 in Oryza sativa, we demonstrate the role of OsMSRB5 in maintaining seed vigor and longevity. We show that an age-induced reduction in the vigor and viability of seeds is correlated with reduced MSR activity and increased methionine sulfoxide (MetSO) formation. OsMSRB5 expression increases during seed maturation and is predominantly localized to the embryo. Further analyses on transgenic lines reveal the role of OsMSRB5 in modulating reactive oxygen species (ROS) homeostasis to preserve seed vigor and longevity. We show that ascorbate peroxidase and PROTEIN l-ISOASPARTYL METHYLTRANSFERASE undergo MetSO modification in seeds that affects their functional competence. OsMSRB5 physically interacts with these proteins and reverts this modification to facilitate their functions and preserve seed vigor and longevity. Our results thus illustrate the role of OsMSRB5 in preserving seed vigor and longevity by modulating ROS homeostasis in seeds.
Collapse
Affiliation(s)
- Abhijit Hazra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vishal Varshney
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nitin Uttam Kamble
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shraboni Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rakesh Kumar Achary
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shikha Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
11
|
Xue B, Li H, Liu S, Feng Q, Xu Y, Deng R, Chen S, Wang J, Li X, Wan M, Tang S, Zhu H. The redox cycling of STAT2 maintains innate immune homeostasis. Cell Rep 2022; 40:111215. [PMID: 35977519 DOI: 10.1016/j.celrep.2022.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Interferons (IFNs) are essential in antiviral defense, antitumor effects, and immunoregulatory activities. Although methionine oxidation is associated with various physiological and pathophysiological processes in plants, animals, and humans, its role in immunity remains unclear. We find that the redox cycling of signal transducer and activator of transcription 2 (STAT2) is an intrinsic cellular biological process, and that impairment of the redox status contributes to STAT2 methionine oxidation, inhibiting its activation. IFN protects STAT2 from methionine oxidation through the recruitment of methionine sulfoxide reductase MSRB2, whose enzymatic activity is enhanced by N-acetyltransferase 9 (NAT9), a chaperone of STAT2 defined in this study, upon IFN treatment. Consequently, loss of Nat9 renders mice more susceptible to viral infection. Our study highlights the key function of methionine oxidation in immunity, which provides evidence for the decline of immune function by aging and may provide insights into the clinical applications of IFN in immune-related diseases.
Collapse
Affiliation(s)
- Binbin Xue
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Shun Liu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Qing Feng
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Yan Xu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Rilin Deng
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Shengwen Chen
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Jingjing Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Xinran Li
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Mengyu Wan
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China; Research Center of Cancer Prevention and Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Cancer Hospital, Changsha, Hunan, China.
| |
Collapse
|
12
|
Chen Y, Zou H, Yan B, Wu X, Cao W, Qian Y, Zheng L, Yang G. Atomically Dispersed Cu Nanozyme with Intensive Ascorbate Peroxidase Mimic Activity Capable of Alleviating ROS-Mediated Oxidation Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103977. [PMID: 34951150 PMCID: PMC8844488 DOI: 10.1002/advs.202103977] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Indexed: 05/03/2023]
Abstract
Ascorbate peroxidase (APX) as a crucial antioxidant enzyme has drawn attentions for its utilization in preventing cells from oxidative stress responses by efficiently scavenging H2 O2 in plants. For eliminating the specific inactivation of natural APXs and regulating the catalytic activity, single-atom nanozymes are considered as promising classes of alternatives with similar active sites and maximal atomic utilization efficiency to natural APXs. Herein, graphitic carbon nitride (g-C3 N4 ) anchored with isolated single copper atoms (Cu SAs/CN) is designed as an efficient nanozyme with intrinsic APX mimetic behavior. The engineered Cu SAs/CN exhibits comparable specific activity and kinetics to the natural APXs. Based on the density functional theory (DFT), Cu-N4 moieties in the active center of Cu SAs/CN are determined to exert such favorable APX catalytic performance, in which the electron transfer between Cu and coordinated N atoms facilitates the activation and cleavage of the adsorbed H2 O2 molecules and results in fast kinetics. The constructed Cu SAs/CN nanozyme with superior APX-like performance and high biocompatibility can be applied for effectively protecting the H2 O2 -treated cells against oxidative injury in vitro. These findings report the single-atom nanozymes as a successful paradigm for guiding nanozymes to implement APX mimetic performance for reactive oxygen species-related biotherapeutic.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Hang Zou
- Department of Laboratory MedicineNanfang Hospital, Southern Medical University/The First School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Bo Yan
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Xiaoju Wu
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Weiwei Cao
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yihang Qian
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang Hospital, Southern Medical University/The First School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| |
Collapse
|
13
|
Antioxidant enzymatic activities and profiling of gene expression associated with organophosphate stress tolerance in Solanum melongena L.cv. Longai. 3 Biotech 2021; 11:510. [PMID: 34926108 DOI: 10.1007/s13205-021-03061-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022] Open
Abstract
The tolerance mechanism of chemical pesticide is necessary to combat the pest infestation challenges. This study intended to analyze the responses of enzymatic activity and expression level of an antioxidant gene to organophosphate pesticide stress. The alteration of anti-oxidative correlated with pesticide treatment in eggplant (S. melongena L.cv. Longai) using varying concentrations (0, 50, 100, 150 and 200 ppm) of malathion (PM) and tatafen (PTF) each. The enzyme activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were observed to be elevated with pesticide treatment in eggplant seedling. FeSOD (iron SOD), CAT and APX genes associated in defense mechanisms were significantly expressed under PM and PTF stress which contributed to stress tolerance to the plant. The different concentration of both pesticide stresses altered the expression level of mRNA, FeSOD, CAT and APX genes in comparison to the non-treated plant. While mRNA level of three antioxidant genes were evaluated and found to be APX gene expression was more potent than the CAT and FeSOD gene subjected to different concentrations of PM and PTF in eggplant. The current experiment highlights the presence of minimum level of pesticide concentration impacted positively towards the plant growth and metabolism, while high level of pesticide concentration impacted negatively. In summary, antioxidant enzymes activity responded to both pesticide stresses at an early stage of exposure and their gene expression profiles provided more details about their complex interaction and effectively scavenge reactive oxygen species. This allows the plant to maintain growth under pesticide stress.
Collapse
|