1
|
Ahmed IA, Zamakshshari NH, Mikail MA, Bello I, Hossain MS. Garcinia flavonoids for healthy aging: Anti-senescence mechanisms and cosmeceutical applications in skin care. Fitoterapia 2025; 180:106282. [PMID: 39489352 DOI: 10.1016/j.fitote.2024.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Cellular senescence, the irreversible arrest of cell division, is a hallmark of aging and a key contributor to age-related disorders. Targeting senescent cells represents a promising therapeutic approach to combat these ailments. This review explores the potential of Garcinia species, a genus rich in flavonoids with established antioxidant and anti-inflammatory properties, as a source of natural anti-senescence agents. We investigate the intricate connections between aging, cellular senescence, and oxidative stress, highlighting the detrimental effects of free radicals on cellular health. Furthermore, we analyze the diverse array of flavonoids identified within Garcinia and their established cellular mechanisms. We critically evaluate the emerging evidence for the anti-senescence potential of flavonoids in general and the limited research on Garcinia flavonoids in this context. By identifying existing knowledge gaps and paving the way for future research, this review underscores the exciting potential of Garcinia flavonoids as natural anti-senescence agents. These agents hold promise for not only promoting healthy aging but also for the development of cosmeceutical products that combat the visible signs of aging.
Collapse
Affiliation(s)
- Idris Adewale Ahmed
- Department of Biotechnology, Faculty of Applied Science, Lincoln University College, 47301 Petaling Jaya, Selangor, Malaysia; Mimia Sdn. Bhd., Selangor, Malaysia.
| | - Nor Hisam Zamakshshari
- Department of Chemistry, Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | | | - Ibrahim Bello
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, USA.
| | - Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), University Malaysia Pahang Al-Sultan Abdullah, Kuantan 26300, Malaysia.
| |
Collapse
|
2
|
Wei W, Ma D, Gu L, Li Y, Zhang L, Li L, Zhang L. Epimedium flavonoids improve cerebral white matter lesions by inhibiting neuroinflammation and activating neurotrophic factor signal pathways in spontaneously hypertensive rats. Int Immunopharmacol 2024; 139:112683. [PMID: 39018691 DOI: 10.1016/j.intimp.2024.112683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Cerebral small vessel disease (CSVD) is one of the most common nervous system diseases. Hypertension and neuroinflammation are considered important risk factors for the development of CSVD and white matter (WM) lesions. We used the spontaneously hypertensive rat (SHR) as a model of early-onset CSVD and administered epimedium flavonoids (EF) for three months. The learning and memorization abilities were tested by new object recognition test. The pathological changes of WM were assessed using magnetic resonance imaging, transmission electron microscopy (TEM), Luxol fast blue and Black Gold staining. Oligodendrocytes (OLs) and myelin basic protein were detected by immunohistochemistry. The ultrastructure of the tight junctions was examined using TEM. Microglia and astrocytes were detected by immunofluorescence. RNA-seq was performed on the corpus callosum of rats. The results revealed that EF could significantly improve the learning and memory impairments in SHR, alleviate the injury and demyelination of WM nerve fibers, promote the differentiation of oligodendrocyte precursor cells (OPCs) into mature OLs, inhibit the activation of microglia and astrocytes, inhibit the expression of p38 MAPK/NF-κB p65/NLRP3 and inflammatory cytokines, and increase the expression of tight-junction related proteins ZO-1, occludin, and claudin-5. RNA-seq analysis showed that the neurotrophin signaling pathway played an important role in the disease. RT-qPCR and WB results showed that EF could regulate the expression of nerve growth factor and brain-derived neurotrophic factor and their downstream related proteins in the neurotrophin signaling pathway, which might explain the potential mechanism of EF's effects on the cognitive impairment and WM damage caused by hypertension.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Lihong Gu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
3
|
Wei W, Ma D, Li L, Zhang L. Cognitive impairment in cerebral small vessel disease induced by hypertension. Neural Regen Res 2024; 19:1454-1462. [PMID: 38051887 PMCID: PMC10883517 DOI: 10.4103/1673-5374.385841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/22/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease, the most common cerebrovascular disease. However, the causal relationship between hypertension and cerebral small vessel disease remains unclear. Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease. Chronic hypertension and lifestyle factors are associated with risks for stroke and dementia, and cerebral small vessel disease can cause dementia and stroke. Hypertension is the main driver of cerebral small vessel disease, which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction, leukoaraiosis, white matter lesions, and intracerebral hemorrhage, ultimately resulting in cognitive decline and demonstrating that the brain is the target organ of hypertension. This review updates our understanding of the pathogenesis of hypertension-induced cerebral small vessel disease and the resulting changes in brain structure and function and declines in cognitive ability. We also discuss drugs to treat cerebral small vessel disease and cognitive impairment.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
4
|
Ruan Y, Meng S, Jia R, Cao X, Jin Z. MicroRNA-322-5p protects against myocardial infarction through targeting BTG2. Am J Med Sci 2024; 367:397-405. [PMID: 38437946 DOI: 10.1016/j.amjms.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/21/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Numerous studies have explored the therapeutic potential of microRNA (miR) in myocardial infarction (MI) treatment. This study focuses on the role of miR-322-5p in MI, particularly in its regulatory interaction with B-cell translocation gene 2 (BTG2). MATERIALS AND METHODS Expression levels of miR-322-5p and BTG2 were assessed in a rat MI model. Adenovirus altering miR-322-5p or BTG2 expression were administered to MI rats. Evaluation included cardiac function, inflammation, myocardial injury, pathological changes, apoptosis, and NF-κB pathway-related genes in MI rats post-targeted treatment. The miR-322-5p and BTG2 targeting relationship was investigated. RESULTS MI rats exhibited low miR-322-5p and high BTG2 expression in the myocardial tissues. Restoration of miR-322-5p enhanced cardiac function, alleviated inflammation and myocardial injury, mitigated pathological changes and apoptosis, and deactivated the NF-κB pathway in MI rats. BTG2 expression was negatively-regulated by miR-322-5p. Overexpressed BTG2 counteracted miR-322-5p-induced cardioprotection on MI rats. CONCLUSION This study provides evidence that miR-322-5p protects against MI by suppressing BTG2 expression.
Collapse
Affiliation(s)
- Yang Ruan
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Meng
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruofei Jia
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaojing Cao
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zening Jin
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
5
|
Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the Frontiers of Guardian Antioxidant Selenoproteins in Cardiovascular Pathophysiology. Antioxid Redox Signal 2024; 40:369-432. [PMID: 38299513 DOI: 10.1089/ars.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.
Collapse
Affiliation(s)
- Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana "Gabriele Monasterio," Pisa, Italy
| | - Claudia Penna
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Pasquale Pagliaro
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
6
|
Zou J, Chen H, Fan X, Qiu Z, Zhang J, Sun J. Garcinol prevents oxidative stress-induced bone loss and dysfunction of BMSCs through NRF2-antioxidant signaling. Cell Death Discov 2024; 10:82. [PMID: 38365768 PMCID: PMC10873372 DOI: 10.1038/s41420-024-01855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
There are multiple published data showing that excessive oxidative stress contributes to bone loss and even bone tissue damage, and it is also correlated with the pathophysiology of bone degenerative diseases, including osteoporosis (OP). Garcinol, a polyisoprenylated benzophenone derivative, has been recently established as an anti-oxidant agent. However, it remains elusive whether Garcinol protects bone marrow mesenchymal stem cells (BMSCs) and bone tissue from oxidative stress-induced damage. Here, we explored the potential effects of Garcinol supplementation in ameliorating oxidative stimulation-induced dysfunction of BMSCs and bone loss in osteoporotic mice. In this study, we verified that Garcinol exerted potent protective functions in the hydrogen peroxide (H2O2)-induced excessive oxidative stress and dysfunction of BMSCs. Besides, Garcinol was also identified to improve the reduced bone mass and abnormal lineage commitment of BMSCs in the condition of OP by suppressing the oxidative stimulation. Subsequent analysis revealed that nuclear factor erythroid 2-related factor 2 (NRF2) might be a key regulator in the sheltering effects of Garcinol on the H2O2-regulated oxidative stress, and the protective functions of Garcinol was mediated by NRF2-antioxidant signaling. Collectively, Garcinol prevented oxidative stress-related BMSC damage and bone loss through the NRF2-antioxidant signaling, which suggested the promising therapeutic values of Garcinol in the treatment of oxidative stress-related bone loss. Therefore, Garcinol might contribute to treating OP.
Collapse
Affiliation(s)
- Jilong Zou
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjun Chen
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinming Fan
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenrui Qiu
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiale Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiabing Sun
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Tao P, Chen X, Xu L, Chen J, Nie Q, Xu M, Feng J. LIMD2 is the Signature of Cell Aging-immune/Inflammation in Acute Myocardial Infarction. Curr Med Chem 2024; 31:2400-2413. [PMID: 37936458 DOI: 10.2174/0109298673274563231031044134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is an age-dependent cardiovascular disease in which cell aging, immunity, and inflammatory factors alter the course; however, cell aging-immune/inflammation signatures in AMI have not been investigated. METHODS Based on the GEO database to obtain microRNA (miRNA) sequencing, mRNA sequencing and single-cell sequencing data, and utilizing the Seurat package to identify AMI-associated cellular subpopulations. Subsequently, differentially expressed miRNAs and mRNAs were screened to establish a network of competing endogenous RNAs (ceRNAs). Senescence and immunity scores were calculated by single sample gene set enrichment analysis (ssGSEA), ESTIMATE and CIBERSORT algorithms, and the Hmisc package was used to screen for genes with the highest correlation with senescence and immunity scores. Finally, protein-protein interaction (PPI) and molecular docking analyses were performed to predict potential therapeutic agents for the treatment of AMI. RESULTS Four cell types (Macrophage, Fibroblast, Endothelial cells, CD8 T cells) were identified in AMI, and CD8 T cells exhibited the lowest cell aging activity. A ceRNA network of miRNAs- mNRA interactions was established based on the overlapping genes in differentially expressed miRNAs (DEmiRNAs) target genes and differentially expressed mRNAs (DEmRNAs). Twenty-four marker genes of CD8 T cells were observed. LIMD2 was identified as cell aging- immune/inflammation-related hub gene in AMI. This study also identified a potential therapeutic network of DB03276-LIMD2-AMI, which showed excellent and stable binding status between DB03276-LIMD2. CONCLUSION This study identified LIMD2 as a cell aging-immune/inflammation-related hub gene. The understanding of the pathogenesis and therapeutic mechanisms of AMI was enriched by the ceRNA network and DB03276-LIMD2-LAMI therapeutic network.
Collapse
Affiliation(s)
- Ping Tao
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518035, China
| | - Xiaoming Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Lei Xu
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Junteng Chen
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Department of Intensive Care Unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Qinqi Nie
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Department of Intensive Care Unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Mujuan Xu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Department of Intensive Care Unit, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Jianyi Feng
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
8
|
Li J, Ye F, Xu X, Xu P, Wang P, Zheng G, Ye G, Yu W, Su Z, Lin J, Che Y, Liu Z, Feng P, Cao Q, Li D, Xie Z, Wu Y, Shen H. Targeting macrophage M1 polarization suppression through PCAF inhibition alleviates autoimmune arthritis via synergistic NF-κB and H3K9Ac blockade. J Nanobiotechnology 2023; 21:280. [PMID: 37598147 PMCID: PMC10439630 DOI: 10.1186/s12951-023-02012-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/17/2023] [Indexed: 08/21/2023] Open
Abstract
Sustained inflammatory invasion leads to joint damage and progressive disability in several autoimmune rheumatic diseases. In recent decades, targeting M1 macrophage polarization has been suggested as a promising therapeutic strategy for autoimmune arthritis. P300/CBP-associated factor (PCAF) is a histone acetyltransferase (HAT) that exhibits a strong positive relationship with the proinflammatory microenvironment. However, whether PCAF mediates M1 macrophage polarization remains poorly studied, and whether targeting PCAF can protect against autoimmune arthritis in vivo remains unclear. Commonly used drugs can cause serious side effects in patients because of their extensive and nonspecific distribution in the human body. One strategy for overcoming this challenge is to develop drug nanocarriers that target the drug to desirable regions and reduce the fraction of drug that reaches undesirable targets. In this study, we demonstrated that PCAF inhibition could effectively inhibit M1 polarization and alleviate arthritis in mice with collagen-induced arthritis (CIA) via synergistic NF-κB and H3K9Ac blockade. We further designed dextran sulfate (DS)-based nanoparticles (DSNPs) carrying garcinol (a PCAF inhibitor) to specifically target M1 macrophages in inflamed joints of the CIA mouse model via SR-A-SR-A ligand interactions. Compared to free garcinol, garcinol-loaded DSNPs selectively targeted M1 macrophages in inflamed joints and significantly improved therapeutic efficacy in vivo. In summary, our study indicates that targeted PCAF inhibition with nanoparticles might be a promising strategy for treating autoimmune arthritis via M1 macrophage polarization inhibition.
Collapse
Affiliation(s)
- Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
- Shenzhen Key Laboratory of Ankylosing Spondylitis, 518003 Shenzhen, PR China
- Guangdong Orthopedic Clinical Research Center, 518003 Shenzhen, PR China
| | - Feng Ye
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
| | - Xiaojun Xu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
| | - Peitao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
- Shenzhen Key Laboratory of Ankylosing Spondylitis, 518003 Shenzhen, PR China
- Guangdong Orthopedic Clinical Research Center, 518003 Shenzhen, PR China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
- Shenzhen Key Laboratory of Ankylosing Spondylitis, 518003 Shenzhen, PR China
- Guangdong Orthopedic Clinical Research Center, 518003 Shenzhen, PR China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
- Shenzhen Key Laboratory of Ankylosing Spondylitis, 518003 Shenzhen, PR China
- Guangdong Orthopedic Clinical Research Center, 518003 Shenzhen, PR China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
| | - Zhidong Liu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
| | - Pei Feng
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
| | - Qian Cao
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
| | - Dateng Li
- 121 Westmoreland Ave, 10606 White Plains, NY USA
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
- Shenzhen Key Laboratory of Ankylosing Spondylitis, 518003 Shenzhen, PR China
- Guangdong Orthopedic Clinical Research Center, 518003 Shenzhen, PR China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
- Shenzhen Key Laboratory of Ankylosing Spondylitis, 518003 Shenzhen, PR China
- Guangdong Orthopedic Clinical Research Center, 518003 Shenzhen, PR China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, 518003 Shenzhen, PR China
- Shenzhen Key Laboratory of Ankylosing Spondylitis, 518003 Shenzhen, PR China
- Guangdong Orthopedic Clinical Research Center, 518003 Shenzhen, PR China
| |
Collapse
|
9
|
Hung MJ, Yeh CT, Kounis NG, Koniari I, Hu P, Hung MY. Coronary Artery Spasm-Related Heart Failure Syndrome: Literature Review. Int J Mol Sci 2023; 24:ijms24087530. [PMID: 37108691 PMCID: PMC10145866 DOI: 10.3390/ijms24087530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Although heart failure (HF) is a clinical syndrome that becomes worse over time, certain cases can be reversed with appropriate treatments. While coronary artery spasm (CAS) is still underappreciated and may be misdiagnosed, ischemia due to coronary artery disease and CAS is becoming the single most frequent cause of HF worldwide. CAS could lead to syncope, HF, arrhythmias, and myocardial ischemic syndromes such as asymptomatic ischemia, rest and/or effort angina, myocardial infarction, and sudden death. Albeit the clinical significance of asymptomatic CAS has been undervalued, affected individuals compared with those with classic Heberden's angina pectoris are at higher risk of syncope, life-threatening arrhythmias, and sudden death. As a result, a prompt diagnosis implements appropriate treatment strategies, which have significant life-changing consequences to prevent CAS-related complications, such as HF. Although an accurate diagnosis depends mainly on coronary angiography and provocative testing, clinical characteristics may help decision-making. Because the majority of CAS-related HF (CASHF) patients present with less severe phenotypes than overt HF, it underscores the importance of understanding risk factors correlated with CAS to prevent the future burden of HF. This narrative literature review summarises and discusses separately the epidemiology, clinical features, pathophysiology, and management of patients with CASHF.
Collapse
Affiliation(s)
- Ming-Jui Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Keelung, Chang Gung University College of Medicine, Keelung City 24201, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Nicholas G Kounis
- Department of Cardiology, University of Patras Medical School, 26221 Patras, Greece
| | - Ioanna Koniari
- Cardiology Department, Liverpool Heart and Chest Hospital, Liverpool L14 3PE, UK
| | - Patrick Hu
- Department of Internal Medicine, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Department of Cardiology, Riverside Medical Clinic, Riverside, CA 92506, USA
| | - Ming-Yow Hung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei City 110301, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
10
|
Chen JL, Feng ZL, Zhou F, Lou RH, Peng C, Ye Y, Lin LG. 14-Deoxygarcinol improves insulin sensitivity in high-fat diet-induced obese mice via mitigating NF-κB/Sirtuin 2-NLRP3-mediated adipose tissue remodeling. Acta Pharmacol Sin 2023; 44:434-445. [PMID: 35945312 PMCID: PMC9889782 DOI: 10.1038/s41401-022-00958-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Interleukin (IL)-1β is a culprit of adipose tissue inflammation, which in turn causes systematic inflammation and insulin resistance in obese individuals. IL-1β is mainly produced in monocytes and macrophages and marginally in adipocytes, through cleavage of the inactive pro-IL-1β precursor by caspase-1, which is activated via the NLRP3 inflammasome complex. The nuclear factor-κB (NF-κB) transcription factor is the master regulator of inflammatory responses. Brindle berry (Garcinia cambogia) has been widely used as health products for treating obesity and related metabolic disorders, but its active principles remain unclear. We previously found a series of polyisoprenylated benzophenones from brindle berry with anti-inflammatory activities. In this study we investigated whether 14-deoxygarcinol (DOG), a major polyisoprenylated benzophenone from brindle berry, alleviated adipose tissue inflammation and insulin sensitivity in high-fat diet fed mice. The mice were administered DOG (2.5, 5 mg · kg-1 · d-1, i.p.) for 4 weeks. We showed that DOG injection dose-dependently improved insulin resistance and hyperlipidemia, but not adiposity in high-fat diet-fed mice. We found that DOG injection significantly alleviated adipose tissue inflammation via preventing macrophage infiltration and pro-inflammatory polarization of macrophages, and adipose tissue fibrosis via reducing the abnormal deposition of extracellular matrix. In LPS plus nigericin-stimulated THP-1 macrophages, DOG (1.25, 2.5, 5 μM) dose-dependently suppressed the activation of NLRP3 inflammasome and NF-κB signaling pathway. We demonstrated that DOG bound to and activated the deacetylase Sirtuin 2, which in turn deacetylated and inactivated NLRP3 inflammasome to reduce IL-1β secretion. Moreover, DOG (1.25, 2.5, 5 μM) dose-dependently mitigated inflammatory responses in macrophage conditioned media-treated adipocytes and suppressed macrophage migration toward adipocytes. Taken together, DOG might be a drug candidate to treat metabolic disorders through modulation of adipose tissue remodeling.
Collapse
Affiliation(s)
- Jia-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhe-Ling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ruo-Han Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
11
|
Wang S, Ji T, Wang L, Qu Y, Wang X, Wang W, Lv M, Wang Y, Li X, Jiang P. Exploration of the mechanism by which Huangqi Guizhi Wuwu decoction inhibits Lps-induced inflammation by regulating macrophage polarization based on network pharmacology. BMC Complement Med Ther 2023; 23:8. [PMID: 36624435 PMCID: PMC9830836 DOI: 10.1186/s12906-022-03826-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Huangqi Guizhi Wuwu decoction (HQGZWWD) is a traditional Chinese herbal medicine formulation with significant anti-inflammatory activity. However, its underlying mechanism remains unknown. Through network pharmacology and experimental validation, this study aimed to examine the potential mechanism of HQGZWWD in regulating macrophage polarization and inflammation. METHODS The active components were obtained from the Traditional Chinese Medicine Systems Pharmacology database and Analysis Platform (TCMSP), whereas the corresponding targets were obtained from the TCMSP and Swiss Target Prediction database. The GeneCards database identified targets associated with macrophage polarization and inflammation. Multiple networks were developed to identify the key compounds, principal biological processes, and pathways of HQGZWWD that regulate macrophage polarization and inflammation. Autodock Vina is utilized to assess the binding ability between targets and active compounds. Finally, confirm the experiment's central hypothesis. Human histiocytic lymphoma (U-937) cells were transformed into M1 macrophages following stimulation with Lipopolysaccharide (LPS) to evaluate the effect of HQGZWWD drug-containing mouse serum (HQGZWWD serum) on regulating macrophage polarization and inflammation. RESULTS A total of 54 active components and 859 HQGZWWD targets were obtained. There were 9972 targets associated with macrophage polarization and 11,109 targets associated with inflammation. After screening, 34 overlapping targets were identified, of which 5 were identified as central targets confirmed by experiments, including the α7 nicotinic acetylcholine receptor (α7 nAchR), interleukin 6 (IL-6), Interleukin-1 beta (IL-1β), interleukin 10 (IL-10) and growth factor beta (TGF-β1). Pathway enrichment analysis revealed that 34 overlapping targets were enriched in multiple pathways associated with macrophage polarization and inflammation, including the TGF beta signaling pathway, NF-kappa B signaling pathway, JAK-STAT signaling pathway, and TNF signaling pathway. Molecular docking confirmed that the majority of HQGZWWD's compounds can bind to the target. In vitro experiments, HQGZWWD serum was shown to up-regulate the expression of α7 nAchR, reduce the number of M1 macrophages, stimulate the production of M2 macrophages, inhibit the expression of pro-inflammatory cytokines IL-6 and IL1-β, and increase the expression of anti-inflammatory cytokines IL-10 and TGF-β1. CONCLUSION HQGZWWD can regulate the number of M1/M2 macrophages and the level of inflammatory cytokines, and the underlying mechanism may be related to the up-regulation of α7 nAchR expression.
Collapse
Affiliation(s)
- Sutong Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Tianshu Ji
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Lin Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yiwei Qu
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Xinhui Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Wenting Wang
- grid.464481.b0000 0004 4687 044XNational Clincial Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091 China
| | - Mujie Lv
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yongcheng Wang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Xiao Li
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Ping Jiang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| |
Collapse
|
12
|
Liao R, Zhao P, Wu J, Fang K. Salidroside protects against intestinal barrier dysfunction in septic mice by regulating IL‑17 to block the NF‑κB and p38 MAPK signaling pathways. Exp Ther Med 2023; 25:89. [PMID: 36684648 PMCID: PMC9849854 DOI: 10.3892/etm.2023.11788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome, mainly caused by infection or suspected infectious factors. The intestine is not only one of the most easily involved organs in the course of sepsis, but also the dynamic organ for the course of sepsis. The present study investigated the protective effect and mechanism of salidroside on intestinal barrier dysfunction of septic mice. Briefly, C57BL/6 mice were used to establish a septic model and then administered with salidroside. The ileum tissues of mice were examined by histopathological examination. Fluorescein isothiocyanate-dextran concentration was measured. IL-17, IL-6, IL-13 and TNF-α levels in ileum tissues and NF-κB and p38 MAPK activations were detected by ELISA and the expressions of NF-κB p65 and p38 MAPK protein with their phosphorylation and intestinal tight junction proteins were gauged by western blotting. The above assays were performed again to investigate the effect of anti-IL-17A and salidroside (160 mg/kg) alone or in combination. The septic model induced the ileum tissue injury, increased intestinal permeability and TNF-α, IL-17 and IL-6 levels, activated NF-κB and p38 MAPK pathways, promoted the expressions of NF-κB p65 and p38 MAPK and their phosphorylation, while suppressing the levels of IL-13 and intestinal tight junction proteins. Salidroside and anti-IL-17A partially reversed the above effects of septic model, which in combination further strengthened the reversing effect. Collectively, salidroside protected against intestinal barrier dysfunction in septic mice by downregulating IL-17 level to inhibit NF-κB and p38 MAPK signaling pathways, thus providing a new treatment direction.
Collapse
Affiliation(s)
- Rongxin Liao
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China,Correspondence to: Dr Rongxin Liao, Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Road, Haizhu, Guangzhou, Guangdong 510310, P.R. China
| | - Peng Zhao
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| | - Jianming Wu
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| | - Keren Fang
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| |
Collapse
|
13
|
Zhao J, Yu L, Xue X, Xu Y, Huang T, Xu D, Wang Z, Luo L, Wang H. Diminished α7 nicotinic acetylcholine receptor (α7nAChR) rescues amyloid-β induced atrial remodeling by oxi-CaMKII/MAPK/AP-1 axis-mediated mitochondrial oxidative stress. Redox Biol 2023; 59:102594. [PMID: 36603528 PMCID: PMC9813735 DOI: 10.1016/j.redox.2022.102594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/15/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The potential coexistence of Alzheimer's disease (AD) and atrial fibrillation (AF) is increasingly common as aging-related diseases. However, little is known about mechanisms responsible for atrial remodeling in AD pathogenesis. α7 nicotinic acetylcholine receptors (α7nAChR) has been shown to have profound effects on mitochondrial oxidative stress in both organ diseases. Here, we investigate the role of α7nAChR in mediating the effects of amyloid-β (Aβ) in cultured mouse atrial cardiomyocytes (HL-1 cells) and AD model mice (APP/PS1). In vitro, apoptosis, oxidative stress and mitochondrial dysfunction induced by Aβ long-term (72h) in HL-1 cells were prevented by α-Bungarotoxin(α-BTX), an antagonist of α7nAChR. This cardioprotective effect was due to reinstating Ca2+ mishandling by decreasing the activation of CaMKII and MAPK signaling pathway, especially the oxidation of CaMKII (oxi-CaMKII). In vivo studies demonstrated that targeting knockdown of α7nAChR in cardiomyocytes could ameliorate AF progression in late-stage (12 months) APP/PS1 mice. Moreover, α7nAChR deficiency in cardiomyocytes attenuated APP/PS1-mutant induced atrial remodeling characterized by reducing fibrosis, atrial dilation, conduction dysfunction, and inflammatory mediator activities via suppressing oxi-CaMKII/MAPK/AP-1. Taken together, our findings suggest that diminished α7nAChR could rescue Aβ-induced atrial remodeling through oxi-CaMKII/MAPK/AP-1-mediated mitochondrial oxidative stress in atrial cells and AD mice.
Collapse
Affiliation(s)
- Jikai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Xiaodong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Tao Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Dengyue Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China,Postgraduate College, China Medical University, Shenyang, PR China
| | - Zhishang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Linyu Luo
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China,Postgraduate College, Dalian Medical University, Dalian, PR China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China.
| |
Collapse
|
14
|
Chao P, Zhang X, Zhang L, Cui X, Wang S, Yang Y. Causal effects for genetic variants of osteoprotegerin on the risk of acute myocardial infarction and coronary heart disease: A two-sample Mendelian randomization study. Front Cardiovasc Med 2023; 10:1041231. [PMID: 36960470 PMCID: PMC10028206 DOI: 10.3389/fcvm.2023.1041231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/26/2023] [Indexed: 03/09/2023] Open
Abstract
Although since the 1980s, the mortality of coronary heart disease(CHD) has obviously decreased due to the rise of coronary intervention, the mortality and disability of CHD were still high in some countries. Etiological studies of acute myocardial infarction(AMI) and CHD were extremely important. In this study, we used two-sample Mendelian randomization(TSMR) method to collect GWAS statistics of osteoprotegerin (OPG), AMI and CHD to reveal the causal relationship between OPG and these two diseases. In total, we identified 7 genetic variants associated with AMI and 7 genetic variants associated with CHD that were not found to be in linkage disequilibrium(LD; r 2 < 0.001). Evidence of a positive effect of an OPG genetic susceptibility on AMI was discovered(IVW OR = 0.877; 95% CI = 0.787-0.977; p = 0.017; 7 SNPs) and CHD (IVW OR = 0.892; 95% CI = 0.803-0.991; p = 0.033; 7 SNPs). After removing the influence of rs1385492, we found that there was a correlation between OPG and AMI/CHD (AMI: weighted median OR = 0.818;95% CI = 0.724-0.950; p = 0.001; 6SNPs;CHD: weighted median OR = 0.842; 95% CI = 0.755-0.938; p = 1.893 × 10-3; 6SNPs). The findings of our study indicated that OPG had a tight genetic causation association with MI or CHD. This genetic causal relationship presented us with fresh ideas for the etiology of AMI and CHD, which is an area of research that will continue in the future.
Collapse
Affiliation(s)
- Peng Chao
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Xueqin Zhang
- Department of Nephropathy, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Lei Zhang
- Department of Endocrine, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Xinyue Cui
- Department of Nephropathy, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Shanshan Wang
- Department of Nephropathy, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Yining Yang
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, China
- *Correspondence: Yining Yang,
| |
Collapse
|
15
|
Plant-derived polyphenols in sow nutrition: An update. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:96-107. [PMID: 36632620 PMCID: PMC9823128 DOI: 10.1016/j.aninu.2022.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/07/2022]
Abstract
Oxidative stress is a potentially critical factor that affects productive performance in gestating and lactating sows. Polyphenols are a large class of plant secondary metabolites that possess robust antioxidant capacity. All polyphenols are structurally characterized by aromatic rings with multiple hydrogen hydroxyl groups; those make polyphenols perfect hydrogen atoms and electron donors to neutralize free radicals and other reactive oxygen species. In the past decade, increasing attention has been paid to polyphenols as functional feed additives for sows. Polyphenols have been found to alleviate inflammation and oxidative stress in sows, boost their reproductivity, and promote offspring growth and development. In this review, we provided a systematical summary of the latest research advances in plant-derived polyphenols in sow nutrition, and mainly focused on the effects of polyphenols on the (1) antioxidant and immune functions of sows, (2) placental functions and the growth and development of fetal piglets, (3) mammary gland functions and the growth and development of suckling piglets, and (4) the long-term growth and development of progeny pigs. The output of this review provides an important foundation, from more than 8,000 identified plant phenols, to screen potential polyphenols (or polyphenol-enriched plants) as functional feed additives suitable for gestating and lactating sows.
Collapse
|
16
|
Apolipoprotein (a)/Lipoprotein(a)-Induced Oxidative-Inflammatory α7-nAChR/p38 MAPK/IL-6/RhoA-GTP Signaling Axis and M1 Macrophage Polarization Modulate Inflammation-Associated Development of Coronary Artery Spasm. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9964689. [PMID: 35096275 PMCID: PMC8793348 DOI: 10.1155/2022/9964689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/21/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Objective. Apolipoprotein (a)/lipoprotein(a) (Lp(a)), a major carrier of oxidized phospholipids, and α7-nicotinic acetylcholine receptor (α7-nAChR) may play an important role in the development of coronary artery spasm (CAS). In CAS, the association between Lp(a) and the α7-nAChR-modulated inflammatory macrophage polarization and activation and smooth muscle cell dysfunction remains unknown. Methods. We investigated the relevance of Lp(a)/α7-nAChR signaling in patient monocyte-derived macrophages and human coronary artery smooth muscle cells (HCASMCs) using expression profile correlation analyses, fluorescence-assisted cell sorting flow cytometry, immunoblotting, quantitative real-time polymerase chain reaction, and clinicopathological analyses. Results. There are increased serum Lp(a) levels (3.98-fold,
) and macrophage population (3.30-fold,
) in patients with CAS compared with patients without CAS. Serum Lp(a) level was positively correlated with high-sensitivity C-reactive protein (
,
), IL-6 (
,
), and α7-nAChR (
,
) in patients with CAS, but not in patients without CAS. Compared with untreated or low-density lipoprotein- (LDL-) treated macrophages, Lp(a)-treated macrophages exhibited markedly enhanced α7-nAChR mRNA expression (
) and activity (
), in vitro and ex vivo. Lp(a) but not LDL preferentially induced CD80+ macrophage (M1) polarization and reduced the inducible nitric oxide synthase expression and the subsequent NO production. While shRNA-mediated loss of α7-nAChR function reduced the Lp(a)-induced CD80+ macrophage pool, both shRNA and anti-IL-6 receptor tocilizumab suppressed Lp(a)-upregulated α7-nAChR, p-p38 MAPK, IL-6, and RhoA-GTP protein expression levels in cultures of patient monocyte-derived macrophages and HCASMCs. Conclusions. Elevated Lp(a) levels upregulate α7-nAChR/IL-6/p38 MAPK signaling in macrophages of CAS patients and HCASMC, suggesting that Lp(a)-triggered inflammation mediates CAS through α7-nAChR/p38 MAPK/IL-6/RhoA-GTP signaling induction, macrophage M1 polarization, and HCASMC activation.
Collapse
|