1
|
Molina-Valero G, Buendía-Moreno L, Bande-De León C, Bueno-Gavilá E, Tejada L. Production of Protein Hydrolysates Teff ( Eragrostis tef) Flour with Antioxidant and Angiotensin-I-Converting Enzyme (ACE-I) Inhibitory Activity Using Pepsin and Cynara cardunculus L. Extract. Curr Issues Mol Biol 2024; 46:11303-11313. [PMID: 39451552 PMCID: PMC11506589 DOI: 10.3390/cimb46100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
In recent years, several studies have shown the antioxidant and antihypertensive potential of bioactive peptides. Thus, bioactive peptides are likely to be a valuable substance for the development of functional foods. There are a wide variety of sources of these peptides, including several cereals. Teff is an Ethiopian-rooted cereal with an interesting nutritional profile, mainly due to its high amount of protein. In this study, teff flour was subjected to a defatting process for optimizing the protein extraction. Such extraction was performed by precipitation from its isoelectric point, a crucial step that separates the protein from other components based on their charge. The protein obtained was subjected to enzymatic hydrolysis by pepsin and Cynara cardunculus L. The antihypertensive (angiotensin-I-converting enzyme -ACE-I- inhibitory activity) and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl -DPPH- radical scavenging activity) of the peptides were determined. According to the IC50 values, the results obtained showed that the peptides from teff flour show promising bioactivity compared to other cereals. Furthermore, the peptides from teff flour obtained from C. cardunculus L. showed higher antioxidant activity (defatted teff flour -DTF-: 0.59 ± 0.05; protein extract -EP- : 1.04 ± 0.11) than those obtained with pepsin (DTF: 0.87 ± 0.09; EP: 1.73 ± 0.11). However, C. cardunculus L. hydrolyzate peptides showed lower inhibitory activity of ACE-I (DTF: 0.59 ± 0.07; EP: 0.61 ± 0.05) than the pepsin hydrolyzate (DTF: 0.15 ± 0.02; EP: 0.33 ± 0.05).
Collapse
Affiliation(s)
| | | | - Cindy Bande-De León
- Faculty of Pharmacy and Nutrition, Universidad Católica de Murcia-UCAM, Campus de los Jerónimos, 30107 Murcia, Spain; (G.M.-V.); (L.B.-M.); (E.B.-G.); (L.T.)
| | | | | |
Collapse
|
2
|
Rodríguez-Martín NM, Márquez-López JC, Cerrillo I, Millán F, González-Jurado JA, Fernández-Pachón MS, Pedroche J. Production of chickpea protein hydrolysate at laboratory and pilot plant scales: Optimization using principal component analysis based on antioxidant activities. Food Chem 2024; 437:137707. [PMID: 37922804 DOI: 10.1016/j.foodchem.2023.137707] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/18/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
Chickpeas are a nutrient-rich source with optimal and high essential amino acid score. To evaluate its potential as a functional food ingredient, 36 chickpea protein hydrolysates were produced at the lab-scale using food-grade enzymes. Parameters including yields, protein content, hydrolysis degree, and antioxidant activities were employed to identify the most favourable conditions for scaling up production to a pilot plant level using a principal component analysis. The selected hydrolysate demonstrated commendable traits: a substantial content of essential amino acids and proteins at 67.71%, notable protein (73.12%) and weight (72.00%) yields, coupled with exceptional solubility exceeding 80%, and a noteworthy digestibility of 89.50%. Upon transition to pilot plant proportions, the hydrolysate retained its attenuated protein profile while exhibiting heightened antioxidant activities. Derived chickpea protein hydrolysates offer promise for innovative foods applications, impacting health and chronic disease prevention.
Collapse
Affiliation(s)
| | | | - Isabel Cerrillo
- Area of Nutrition and Food Sciences, Department of Molecular Biology and Biochemistry Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Francisco Millán
- Group of Plant Proteins, Instituto de la Grasa-CSIC, 41013 Seville, Spain.
| | - José Antonio González-Jurado
- Physical and Sport Education, Department of Sport and Computer Science, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | - María-Soledad Fernández-Pachón
- Area of Nutrition and Food Sciences, Department of Molecular Biology and Biochemistry Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Justo Pedroche
- Group of Plant Proteins, Instituto de la Grasa-CSIC, 41013 Seville, Spain.
| |
Collapse
|
3
|
Hamdi A, Viera-Alcaide I, Jiménez-Araujo A, Rodríguez-Arcos R, Guillén-Bejarano R. Applications of Saponin Extract from Asparagus Roots as Functional Ingredient. Foods 2024; 13:274. [PMID: 38254575 PMCID: PMC10814866 DOI: 10.3390/foods13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
When replanting an asparagus field, the roots of the previous crop are crushed and incorporated into the soil, creating problems of autotoxicity and fungal infections. Asparagus roots can be considered as a valuable byproduct, since they are very rich in saponins (3-6%), compounds currently considered as bio-emulsifiers. The objective is to evaluate the emulsifying and foaming capacity of a saponin extract from asparagus roots (ARS) and compare it with other commercial extracts. ARS was obtained using a process patented by our research group. The results have shown that ARS has activity similar to Quillaja extract. Its critical micellar concentration falls between that of Quillaja and Tribulus extracts (0.064, 0.043, and 0.094 g/100 mL, respectively). Both emulsifying and foaming activities are affected by pH, salt, and sucrose to a similar extent as the other extracts. Additionally, it has demonstrated an inhibitory effect on pancreatic lipase, which is even better than the other two studied extracts, as indicated by its IC50 value (0.7887, 1.6366, and 2.0107 mg/mL for asparagus, Quillaja, and Tribulus, respectively). These results suggest that ARS could serve as a natural emulsifying/foaming agent for healthier and safer food products and as a potential aid in treatments for obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Amel Hamdi
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide Universitary Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (A.H.); (I.V.-A.); (R.R.-A.); (R.G.-B.)
- Molecular Biology and Biochemical Engineering Department, Centro Andaluz de Biología del Desarrollo (CABD), University Pablo de Olavide (UPO), CSIC/UPO/JA, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - Isabel Viera-Alcaide
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide Universitary Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (A.H.); (I.V.-A.); (R.R.-A.); (R.G.-B.)
| | - Ana Jiménez-Araujo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide Universitary Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (A.H.); (I.V.-A.); (R.R.-A.); (R.G.-B.)
| | - Rocío Rodríguez-Arcos
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide Universitary Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (A.H.); (I.V.-A.); (R.R.-A.); (R.G.-B.)
| | - Rafael Guillén-Bejarano
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Pablo de Olavide Universitary Campus, Building 46, Carretera de Utrera Km 1, 41013 Seville, Spain; (A.H.); (I.V.-A.); (R.R.-A.); (R.G.-B.)
| |
Collapse
|
4
|
Chasquibol N, Gonzales BF, Alarcón R, Sotelo A, Márquez-López JC, Rodríguez-Martin NM, Del Carmen Millán-Linares M, Millán F, Pedroche J. Optimisation and Characterisation of the Protein Hydrolysate of Scallops ( Argopecten purpuratus) Visceral By-Products. Foods 2023; 12:foods12102003. [PMID: 37238820 DOI: 10.3390/foods12102003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
In this research, scallops (Argopecten purpuratus) visceral meal (SVM) and defatted meal (SVMD) were analysed for their proximal composition, protein solubility, and amino acid profile. Hydrolysed proteins isolated from the scallop's viscera (SPH) were optimised and characterised using response surface methodology with a Box-Behnken design. The effects of three independent variables were examined: temperature (30-70 °C), time (40-80 min), and enzyme concentration (0.1-0.5 AU/g protein) on the degree of hydrolysis (DH %) as a response variable. The optimised protein hydrolysates were analysed for their proximal composition, yield, DH %, protein solubility, amino acid composition, and molecular profile. This research showed that defatted and isolation protein stages are not necessaries to obtain the hydrolysate protein. The conditions of the optimization process were 57 °C, 62 min and 0.38 AU/g protein. The amino acid composition showed a balanced profile since it conforms to the Food and Agriculture Organisation/World Health Organisation recommendations for healthy nutrition. The predominant amino acids were aspartic acid + asparagine, glutamic acid + Glutamate, Glycine, and Arginine. The protein hydrolysates' yield and DH % were higher than 90% and close to 20%, respectively, with molecular weight between 1-5 kDa. The results indicate that the protein hydrolysates of scallops (Argopecten purpuratus) visceral by product optimised and characterised was suitable a lab-scale. Further research is necessary to study the bioactivity properties with biologic activity of these hydrolysates.
Collapse
Affiliation(s)
- Nancy Chasquibol
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, 15023 Fundo Monterrico Chico, Surco, Lima 15023, Peru
| | - Billy Francisco Gonzales
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, 15023 Fundo Monterrico Chico, Surco, Lima 15023, Peru
| | - Rafael Alarcón
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, 15023 Fundo Monterrico Chico, Surco, Lima 15023, Peru
| | - Axel Sotelo
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, 15023 Fundo Monterrico Chico, Surco, Lima 15023, Peru
| | - José Carlos Márquez-López
- Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Campus Universidad Pablo de Olavide Ed. 46, Crtra. Sevilla-Utrera km 1, 41013 Sevilla, Spain
| | - Noelia M Rodríguez-Martin
- Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Campus Universidad Pablo de Olavide Ed. 46, Crtra. Sevilla-Utrera km 1, 41013 Sevilla, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - María Del Carmen Millán-Linares
- Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Campus Universidad Pablo de Olavide Ed. 46, Crtra. Sevilla-Utrera km 1, 41013 Sevilla, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Francisco Millán
- Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Campus Universidad Pablo de Olavide Ed. 46, Crtra. Sevilla-Utrera km 1, 41013 Sevilla, Spain
| | - Justo Pedroche
- Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Campus Universidad Pablo de Olavide Ed. 46, Crtra. Sevilla-Utrera km 1, 41013 Sevilla, Spain
| |
Collapse
|
5
|
Zhu F. Amaranth proteins and peptides: Biological properties and food uses. Food Res Int 2023; 164:112405. [PMID: 36738021 DOI: 10.1016/j.foodres.2022.112405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Amaranthus grains have attracted great attention due to its attractive health benefits. The grains have processing properties (e.g., starch related properties) similar to those of common cereals. Amaranth grains are gluten free and protein is a significant component of these grains. Proteins of the grains have been used in various food applications such as formulations of edible films and emulsions for controlled release of bioactive compounds. The proteins have been hydrolyzed using different enzymes to produce peptides and hydrolysates, which showed a range of biological functions including anti-hypertensive and antioxidant activities among others. They have been formulated into staple foods including breads and pastas for improved nutritional quality. This review summarizes the recent advances of the last 5 years in understanding the biological functions and food applications of proteins, protein hydrolysates and peptides from the grains of different Amaranthus species. Limitations in the studies summarized are critically discussed with an aim to improve the efficiency in amaranth grain protein and peptide research.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
6
|
Anti-Colon Cancer Activity of Novel Peptides Isolated from In Vitro Digestion of Quinoa Protein in Caco-2 Cells. Foods 2022; 11:foods11020194. [PMID: 35053925 PMCID: PMC8774364 DOI: 10.3390/foods11020194] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Quinoa peptides are the bioactive components obtained from quinoa protein digestion, which have been proved to possess various biological activities. However, there are few studies on the anticancer activity of quinoa peptides, and the mechanism has not been clarified. In this study, the novel quinoa peptides were obtained from quinoa protein hydrolysate and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The anticancer activity of these peptides was predicted by PeptideRanker and evaluated using an antiproliferative assay in colon cancer Caco-2 cells. Combined with the result of histone deacetylase 1 (HDAC1) inhibitory activity assay, the highly anticancer activity peptides FHPFPR, NWFPLPR, and HYNPYFPG were screened and further investigated. Molecular docking was used to analyze the binding site between peptides and HDAC1, and results showed that three peptides were bound in the active pocket of HDAC1. Moreover, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot showed that the expression of HDAC1, NFκB, IL-6, IL-8, Bcl-2 was significantly decreased, whereas caspase3 expression showed a remarkable evaluation. In conclusion, quinoa peptides may have the potential to protect against cancer development by inhibiting HDAC1 activity and regulating the expression of the cancer-related genes, which indicates that these peptides could be explored as functional foods to alleviate colon cancer.
Collapse
|