1
|
Zhang F, Su Q, Gao Z, Wu Z, Ji Q, He T, Zhu K, Chen X, Zhang Y, Hou S, Gui L. Impact of Lysine to Methionine Ratios on Antioxidant Capacity and Immune Function in the Rumen of Tibetan Sheep: An RNA-Seq Analysis. Vet Med Sci 2025; 11:e70173. [PMID: 39708312 DOI: 10.1002/vms3.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/29/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
With global protein prices on the rise, lowering protein levels in animal feed, together with balancing diet composition and reducing nitrogen emissions, can both reduce the environmental impact of agriculture and save on feed costs. However, the formulation of an ideal amino acid (AA) composition is crucial for better protein utilization by livestock. This study aimed to investigate the effects of different lysine to methionine ratios on the antioxidant capacity and immune function of the rumen in Tibetan sheep. Ninety male Tibetan sheep, weaned at 2 months of age, were randomly divided into three groups (1:1, 2:1 and 3:1 lysine ratios) and subjected to a 100-day feeding trial. RNA sequencing (RNA-seq) was utilized to analyse the impact of different AA ratios on gene expression in rumen tissue, whereas the levels of antioxidant enzymes (total antioxidant capacity [T-AOC], superoxide dismutase [SOD], glutathione peroxidase [GSH-Px] and catalase [CAT]) and immunoglobulins (immunoglobulin A [IgA], immunoglobulin G [IgG] and immunoglobulin M [IgM]) were evaluated. The results indicated that the 1:1 group significantly upregulated the expression of PTGS2, PLA2G12A and PLA2G4 genes, enhancing antioxidant enzyme activity, reducing free radical production and modulating systemic immune responses. COL16A1 and KCNK5 were highly expressed in the protein digestion and absorption pathway, maintaining the structural integrity and function of the rumen epithelium. BMP4 and TGFBR2 were significantly enriched in the cytokine-cytokine receptor interaction pathway and positively correlated with CAT and T-AOC. ITGA8 was upregulated in the 1:1 group, participating in the regulation of various cellular signalling pathways. ATP2B1 was enriched in the cyclic guanosine monophosphate (cGMP)- protein kinase G (PKG) signalling and mineral absorption pathways, primarily influencing oxidative stress and immune responses by regulating intracellular calcium ion concentration. This study demonstrates that a 1:1 lysine to methionine ratio is most beneficial for enhancing the antioxidant capacity and immune function of the rumen in Tibetan sheep.
Collapse
Affiliation(s)
- Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Qiurong Ji
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Tingli He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Kaina Zhu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Xuan Chen
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Yu Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| |
Collapse
|
2
|
Stocco G, Cipolat-Gotet C, Biffani S, Ablondi M, Negro A, Summer A, Kyriakaki P, Mavrommatis A, Tsiplakou E. Stage of lactation, parity, breed, milk composition and minerals affect the non-enzymatic antioxidant activity of sheep milk. J Dairy Sci 2024:S0022-0302(24)01175-5. [PMID: 39343212 DOI: 10.3168/jds.2024-25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
The aims of this study were to i) characterize sheep milk for non-enzymatic antioxidant activity via 2 different assays, namely the ferric reducing antioxidant power (FRAP) and the 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), and ii) investigate the effect of milk composition and animal-related parameters on these 2 assays by using Generalized Additive Mixed Model (GAMM) approach. A total of 740 ewes belonging to Massese and Comisana breeds were sampled once during the morning milking across 11 sampling sessions. All milk samples were analyzed for fat, protein, casein, and lactose, somatic cell score (SCS) and minerals (Ca, Mg, Na and Cl). The FRAP and DPPH assays were tested to measure the non-enzymatic antioxidant activity of milk, expressed as μM eq. ascorbic acid/mL of milk and % of inhibition, respectively. The GAMM model included the effect of parity and breed as parametric terms, and the effect of days in milk (DIM), milk yield and the interactions protein × fat, casein × SCS, Ca × Mg and Na × Cl as smooth terms. The sampling day was included in the model as random effect. Results revealed that the non-enzymatic antioxidant capacity of sheep milk, expressed as FRAP, was affected by DIM, potentially because of changes in milk composition over time. Conversely, parity and breed of ewes affected DPPH, suggesting that age- and breed-specific factors are related to specific components in milk acting as hydrogen donors. Milk fat and high casein percentages were found to significantly affect FRAP, while protein content was crucial for high DPPH levels. Additionally, Ca and Mg emerged as important non-enzymatic antioxidants for both FRAP and DPPH, highlighting their important role in antioxidant activity of sheep milk. On the other side, combinations of Na and Cl were particularly influential for FRAP, revealing the complex relationship between these minerals and non-enzymatic antioxidant activity of milk. These findings offer valuable insights into the factors affecting the antioxidative properties of sheep milk, highlighting the need for further exploration of other non-enzymatic antioxidants and their contribution to the total antioxidant activity.
Collapse
Affiliation(s)
- Giorgia Stocco
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | | | - Stefano Biffani
- Institute of Agricultural Biology and Biotechnology, National Research Council, 20133 Milano, Italy.
| | - Michela Ablondi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Alessio Negro
- Ufficio Studi, Associazione Nazionale della Pastorizia, 00187 Rome, Italy
| | - Andrea Summer
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Panagiota Kyriakaki
- Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece
| | | | - Eleni Tsiplakou
- Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece
| |
Collapse
|
3
|
Kotsampasi B, Karatzia MA, Tsiokos D, Chadio S. Nutritional Strategies to Alleviate Stress and Improve Welfare in Dairy Ruminants. Animals (Basel) 2024; 14:2573. [PMID: 39272358 PMCID: PMC11394234 DOI: 10.3390/ani14172573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Dairy ruminants provide a major part of the livestock and agriculture sectors. Due to the increase in world population and the subsequent increase in dairy product demands, the dairy sector has been intensified. Dairy farming intensification and the subsequent increase in animal nutritional demands and the increase in the average global temperature as well have subjected animals to various stress conditions that impact their health and welfare. Various management practices and nutritional strategies have been proposed and studied to alleviate these impacts, especially under heat stress, as well as during critical periods, like the transition period. Some of the nutritional interventions to cope with stress factors and ensure optimal health and production are the inclusion of functional fatty acids and amino acids and feed additives (minerals, prebiotics, probiotics, essential oils and herbs, phytobiotics, enzymes, etc.) that have been proven to regulate animals' metabolism and improve their antioxidant status and immune function. Thus, these nutritional strategies could be the key to ensuring optimum growth, milk production, and reproduction efficiency. This review summarizes and highlights key nutritional approaches to support the remarkable metabolic adaptations ruminants are facing during the transition period and to reduce heat stress effects and evaluate their beneficial effects on animal physiology, performance, health, as well as welfare.
Collapse
Affiliation(s)
- Basiliki Kotsampasi
- Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organization-DIMITRA, 58100 Giannitsa, Greece
| | - Maria Anastasia Karatzia
- Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organization-DIMITRA, 58100 Giannitsa, Greece
| | - Dimitrios Tsiokos
- Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organization-DIMITRA, 58100 Giannitsa, Greece
| | - Stella Chadio
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
4
|
Awawdeh MS. Rumen-protected lysine and methionine failed to improve the performance of late-nursing Awassi ewes regardless of dietary protein contents. J Adv Vet Anim Res 2024; 11:711-716. [PMID: 39605771 PMCID: PMC11590600 DOI: 10.5455/javar.2024.k821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/04/2024] [Accepted: 07/26/2024] [Indexed: 11/29/2024] Open
Abstract
Objective The current study investigated the effects of supplying ruminally protected amino acids (AA) (lysine, L; and methionine, M) and dietary protein levels on the performance of late-nursing ewes. Materials and Methods Thirty-one Awassi ewes nursing single lambs were individually housed and assigned randomly to one of four treatment groups (2 × 2 factorial design). Ewes in treatment groups were (with supplemental RPL and RPM) or were not (without supplemental RPL and RPM) supplemented with lysine (8.5 gm/day) and methionine (4 gm/day) and were fed diets containing either 13.2 (moderate protein) or 11.1% (low protein) protein. Results No interactions between supplemental AA and dietary protein levels were observed. Supplying ewes with L and M did not affect (p ≥ 0.06) their nutrient intake or their final body weights (BWs). Additionally, milk composition, yield, and efficiency were not affected by supplemental L and M. Decreasing dietary protein levels did not affect (p = 0.13) the final BWs, milk yield, composition, and efficiency but decreased (p < 0.01) nutrient intake of ewes. Conclusion Under our study conditions, reducing the protein contents of the diets from 13.2% to 11.1% had no negative impact on late-nursing ewes. Regardless of dietary protein level, the beneficial effect of supplying L and M was not evident.
Collapse
Affiliation(s)
- Mofleh S Awawdeh
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Zhang F, Zhang Y, He T, Ji Q, Hou S, Gui L. Changes in Rumen Microbiology and Metabolism of Tibetan Sheep with Different Lys/Met Ratios in Low-Protein Diets. Animals (Basel) 2024; 14:1533. [PMID: 38891581 PMCID: PMC11171176 DOI: 10.3390/ani14111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
In ruminants, supplementing appropriate amounts of amino acids improves growth, feed utilization efficiency, and productivity. This study aimed to assess the effects of different Lys/Met ratios on the ruminal microbial community and the metabolic profiling in Tibetan sheep using 16S rDNA sequencing and non-target metabolomics. Ninety-two-month-old Tibetan rams (initial weight = 15.37 ± 0.92 kg) were divided into three groups and fed lysine/methionine (Lys/Met) of 1:1 (LP-L), 2:1 (LP-M), and 3:1 (LP-H) in low-protein diet, respectively. Results: The T-AOC, GSH-Px, and SOD were significantly higher in the LP-L group than in LP-H and LP-M groups (p < 0.05). Cellulase activity was significantly higher in the LP-L group than in the LP-H group (p < 0.05). In the fermentation parameters, acetic acid concentration was significantly higher in the LP-L group than in the LP-H group (p < 0.05). Microbial sequencing analysis showed that Ace and Chao1 indicators were significantly higher in LP-L than in LP-H and LP-M (p < 0.05). At the genus level, the abundance of Rikenellaceae RC9 gut group flora and Succiniclasticum were significantly higher in LP-L than in LP-M group (p < 0.05). Non-target metabolomics analyses revealed that the levels of phosphoric acid, pyrocatechol, hydrocinnamic acid, banzamide, l-gulono-1,4-lactone, cis-jasmone, Val-Asp-Arg, and tropinone content were higher in LP-L. However, l-citrulline and purine levels were lower in the LP-L group than in the LP-M and LP-H groups. Banzamide, cis-jasmone, and Val-Asp-Arg contents were positively correlated with the phenotypic contents, including T-AOC, SOD, and cellulase. Phosphoric acid content was positively correlated with cellulase and lipase activities. In conclusion, the Met/Lys ratio of 1:1 in low-protein diets showed superior antioxidant status and cellulase activity in the rumen by modulating the microbiota and metabolism of Tibetan sheep.
Collapse
Affiliation(s)
| | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810000, China; (F.Z.); (Y.Z.); (Q.J.); (S.H.)
| |
Collapse
|
6
|
Grassi G, Di Gregorio P, Capasso G, Rando A, Perna AM. Effect of dietary supplementation with rumen-protected amino acids, lysine and methionine, on the performance of Comisana ewes and on the growth of their lambs. Anim Sci J 2024; 95:e70018. [PMID: 39648136 PMCID: PMC11625658 DOI: 10.1111/asj.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
The purpose of the study was to evaluate the effect of supplementing the diets of Comisana ewes with rumen protected methionine and lysine (RP-ML) for a duration of 60 days on quantitative-qualitative production of milk, antioxidant parameters of milk and blood, biochemical parameters of blood, and lambs' growth performance. Two groups of 15 ewes with equal average body weight were considered for the trial. The control group was administered a standard diet (Control, C) and the experimental group the standard diet supplemented with 1.5% lysine and 1.0% methionine (Treated, T). Results showed that RP-ML supplementation positively influenced milk yield, fat and protein content, and casein (p < 0.01). Furthermore, lambs of the T group, compared with those of the C group, showed a 15% higher growth rate during the suckling period of 42 days. Finally, the total antioxidant capacity of milk, measured by ferric reducing antioxidant power and 2,2'-azino-bis(3-ethylbenzotiazolin-6-sulfonic acid assay, was significantly lower in T groups (p < 0.05). In conclusion, the results showed that the integration of RP-ML in ewes could be a valid strategy in order to improve their performances but further investigations are necessary to define the right concentration to be administered to the animals.
Collapse
Affiliation(s)
- Giulia Grassi
- School of Agricultural, Forestry, Food and Environmental SciencesUniversity of BasilicataPotenzaItaly
| | - Paola Di Gregorio
- School of Agricultural, Forestry, Food and Environmental SciencesUniversity of BasilicataPotenzaItaly
| | - Giambattista Capasso
- School of Agricultural, Forestry, Food and Environmental SciencesUniversity of BasilicataPotenzaItaly
| | - Andrea Rando
- School of Agricultural, Forestry, Food and Environmental SciencesUniversity of BasilicataPotenzaItaly
| | - Anna Maria Perna
- School of Agricultural, Forestry, Food and Environmental SciencesUniversity of BasilicataPotenzaItaly
| |
Collapse
|
7
|
Irawan A, Sofyan A, Wahyono T, Harahap MA, Febrisiantosa A, Sakti AA, Herdian H, Jayanegara A. Relationships between dietary rumen-protected lysine and methionine with the lactational performance of dairy cows - A meta-analysis. Anim Biosci 2023; 36:1666-1684. [PMID: 37605536 PMCID: PMC10623038 DOI: 10.5713/ab.23.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVE Our objective was to examine the relationships of supplemental rumen-protected lysine (RPL) or lysine + methionine (RPLM) on lactational performance, plasma amino acids (AA) concentration, and nitrogen use efficiency of lactating dairy cows by using a meta-analysis approach. METHODS A total of 56 articles comprising 77 experiments with either RPL or RPLM supplementation were selected and analyzed using a mixed model methodology by considering the treatments and other potential covariates as fixed effects and different experiments as random effects. RESULTS In early lactating cows, milk yield was linearly increased by RPL (β1 = 0.013; p<0.001) and RPLM (β1 = 0.014; p<0.028) but 3.5% fat-corrected milk (FCM) and energy-corrected milk (ECM) (kg/d) was increased by only RPL. RPL and RPLM did not affect dry matter intake (DMI) but positively increased (p<0.05) dairy efficiency (Milk yield/DMI and ECM/DMI). As a percentage, milk fat, protein, and lactose were unchanged by RPL or RPLM but the yield of all components was increased (p<0.05) by feeding RPL while only milk protein was increased by feeding RPLM. Plasma Lys concentration was linearly increased (p<0.05) with increasing supplemental RPL while plasma Met increased (p<0.05) by RPLM supplementation. The increase in plasma Lys had a strong linear relationship (R2 = 0.693 in the RPL dataset and R2 = 0.769 in the RPLM dataset) on milk protein synthesis (g/d) during early lactation. Nitrogen metabolism parameters were not affected by feeding RPL or RPLM, either top-dress or when supplemented to deficient diets. Lactation performance did not differ between AA-deficient or AA-adequate diets in response to RPL or RPLM supplementation. CONCLUSION RPL or RPLM showed a positive linear relationship on the lactational performance of dairy cows whereas greater improvement effects were observed during early lactation. Supplementing RPL or RPLM is recommended on deficient-AA diet but not on adequate-AA diet.
Collapse
Affiliation(s)
- Agung Irawan
- Vocational School, Universitas Sebelas Maret, Surakarta 57126,
Indonesia
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331, OR,
USA
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
| | - Ahmad Sofyan
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Teguh Wahyono
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Daerah Istimewa Yogyakarta 55861,
Indonesia
| | - Muhammad Ainsyar Harahap
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Andi Febrisiantosa
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Daerah Istimewa Yogyakarta 55861,
Indonesia
| | - Awistaros Angger Sakti
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Hendra Herdian
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911,
Indonesia
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680,
Indonesia
| |
Collapse
|
8
|
Fan Z, Bian Z, Huang H, Liu T, Ren R, Chen X, Zhang X, Wang Y, Deng B, Zhang L. Dietary Strategies for Relieving Stress in Pet Dogs and Cats. Antioxidants (Basel) 2023; 12:545. [PMID: 36978793 PMCID: PMC10045725 DOI: 10.3390/antiox12030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
A variety of physical, emotional, and mental factors can induce a stress response in pet dogs and cats. During this process, hypothalamus-pituitary-adrenal (HPA) and sympathetic-adrenal medulla (SAM) axes are activated to produce a series of adaptive short-term reactions to the aversive situations. Meanwhile, oxidative stress is induced where there is an imbalance between the production and scavenging of reactive oxygen species (ROS). Oxidative damage is also incorporated in sustained stress response causing a series of chronic problems, such as cardiovascular and gastrointestinal diseases, immune dysfunction, and development of abnormal behaviors. In this review, the effects and mechanisms of dietary regulation strategies (e.g., antioxidants, anxiolytic agents, and probiotics) on relieving stress in pet dogs and cats are summarized and discussed. We aim to shed light on future studies in the field of pet food and nutrition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baichuan Deng
- Laboratory of Companion Animal Science, Department of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lingna Zhang
- Laboratory of Companion Animal Science, Department of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Khan MZ, Liu S, Ma Y, Ma M, Ullah Q, Khan IM, Wang J, Xiao J, Chen T, Khan A, Cao Z. Overview of the effect of rumen-protected limiting amino acids (methionine and lysine) and choline on the immunity, antioxidative, and inflammatory status of periparturient ruminants. Front Immunol 2023; 13:1042895. [PMID: 36713436 PMCID: PMC9878850 DOI: 10.3389/fimmu.2022.1042895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Overproduction of reactive oxygen species (ROS) is a well-known phenomenon experienced by ruminants, especially during the transition from late gestation to successful lactation. This overproduction of ROS may lead to oxidative stress (OS), which compromises the immune and anti-inflammatory systems of animals, thus predisposing them to health issues. Besides, during the periparturient period, metabolic stress is developed due to a negative energy balance, which is followed by excessive fat mobilization and poor production performance. Excessive lipolysis causes immune suppression, abnormal regulation of inflammation, and enhanced oxidative stress. Indeed, OS plays a key role in regulating the metabolic activity of various organs and the productivity of farm animals. For example, rapid fetal growth and the production of large amounts of colostrum and milk, as well as an increase in both maternal and fetal metabolism, result in increased ROS production and an increased need for micronutrients, including antioxidants, during the last trimester of pregnancy and at the start of lactation. Oxidative stress is generally neutralized by the natural antioxidant system in the body. However, in some special phases, such as the periparturient period, the animal's natural antioxidant system is unable to cope with the situation. The effect of rumen-protected limiting amino acids and choline on the regulation of immunity, antioxidative, and anti-inflammatory status and milk production performance, has been widely studied in ruminants. Thus, in the current review, we gathered and interpreted the data on this topic, especially during the perinatal and lactational stages.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China,Faculty of Veterinary and Animal Sciences, the University of Agriculture, Dera Ismail Khan, Pakistan
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, the University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Zhijun Cao,
| |
Collapse
|
10
|
Danesh Mesgaran M, Kargar H, Janssen R, Danesh Mesgaran S, Ghesmati A, Vatankhah A. Rumen-protected zinc–methionine dietary inclusion alters dairy cow performances, and oxidative and inflammatory status under long-term environmental heat stress. Front Vet Sci 2022; 9:935939. [PMID: 36172606 PMCID: PMC9510689 DOI: 10.3389/fvets.2022.935939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy cows are susceptible to heat stress due to the levels of milk production and feed intake. Dietary supplemental amino acids, particularly rate-limiting amino acids, for example, methionine (Met), may alleviate the potential negative consequences. Zinc (Zn) is beneficial to the immune system and mammary gland development during heat stress. We investigated the impact of a source of a rumen-protected Zn-Met complex (Loprotin, Kaesler Nutrition GmbH, Cuxhaven, Germany) in high-producing Holstein cows during a long-term environmental heat stress period. A total of 62 multiparous lactating Holstein cows were allocated in a completely randomized design to two dietary treatments, namely, basal diet without (control) and basal diet with the supplemental Zn-Met complex (RPZM) at 0.131% of diet DM. Cows in the RPZM group had higher energy-corrected milk (46.71 vs. 52.85 ± 1.72 kg/d for control and RPZM groups, respectively) as well as milk fat and protein concentration (27.28 vs. 32.80 ± 1.82 and 30.13 vs. 31.03 ± 0.25 g/kg for control and RPZM groups, respectively). The Zn-Met complex supplemented cows had lower haptoglobin and IL-1B concentration than the control (267 vs. 240 ± 10.53 mcg/mL and 76.8 vs. 60.0 ± 3.4 ng/L for control and RPZM groups, respectively). RPZM supplementation resulted in better oxidative status, indicated by higher total antioxidant status and lower malondialdehyde concentrations (0.62 vs. 0.68 ± 0.02 mmol/L and 2.01 vs. 1.76 ± 0.15 nmol/L for control and RPZM groups, respectively). Overall, the results from this study showed that RPZM dietary inclusion could maintain milk production and milk composition of animals during periods of heat stress. Enhanced performance of animals upon Zn-Met complex supplementation could be partly due to improved oxidative and immune status.
Collapse
Affiliation(s)
- Mohsen Danesh Mesgaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- *Correspondence: Mohsen Danesh Mesgaran
| | - Hassan Kargar
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | - Aghil Ghesmati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
11
|
Zhu Y, Bu D, Ma L. Integration of Multiplied Omics, a Step Forward in Systematic Dairy Research. Metabolites 2022; 12:metabo12030225. [PMID: 35323668 PMCID: PMC8955540 DOI: 10.3390/metabo12030225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their unique multi-gastric digestion system highly adapted for rumination, dairy livestock has complicated physiology different from monogastric animals. However, the microbiome-based mechanism of the digestion system is congenial for biology approaches. Different omics and their integration have been widely applied in the dairy sciences since the previous decade for investigating their physiology, pathology, and the development of feed and management protocols. The rumen microbiome can digest dietary components into utilizable sugars, proteins, and volatile fatty acids, contributing to the energy intake and feed efficiency of dairy animals, which has become one target of the basis for omics applications in dairy science. Rumen, liver, and mammary gland are also frequently targeted in omics because of their crucial impact on dairy animals’ energy metabolism, production performance, and health status. The application of omics has made outstanding contributions to a more profound understanding of the physiology, etiology, and optimizing the management strategy of dairy animals, while the multi-omics method could draw information of different levels and organs together, providing an unprecedented broad scope on traits of dairy animals. This article reviewed recent omics and multi-omics researches on physiology, feeding, and pathology on dairy animals and also performed the potential of multi-omics on systematic dairy research.
Collapse
Affiliation(s)
- Yingkun Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- School of Agriculture & Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR), and World Agroforestry Center (ICRAF), Beijing 100193, China
- Correspondence: (D.B.); (L.M.)
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (D.B.); (L.M.)
| |
Collapse
|
12
|
Schmidely P, Bahloul L. Milk performance and oxidative status responses to rumen protected methionine supplementation in genotyped α-S1 casein lactating dairy goats fed two levels of metabolizable protein diets. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Awawdeh MS. Effects of supplemental lysine and methionine on performance of nursing Awassi ewes fed two levels of dietary protein. Trop Anim Health Prod 2022; 54:61. [PMID: 35037142 DOI: 10.1007/s11250-022-03070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
The objective of this study was to investigate the effects of rumen-protected lysine (RPL) and methionine (RPM) supplementation on production performance of nursing ewes fed two levels of dietary protein. Individually housed Awassi ewes (n = 34) nursing single lambs were randomly assigned (2 × 2 factorial design) to one of four dietary treatments with two levels of protein (170 or 151 g/kg; HP or MP) and two levels of RPL and RPM (0 or 8.5 plus 4 g/day/ewe of RPL and RPM, respectively; no or yes). The trial lasted for 5 weeks. Ewes fed the MP diets had (P < 0.01) lower protein intake compared to those fed the HP diets. Intake of other nutrients and milk composition were not significantly (P > 0.13) affected by dietary treatments. Ewes fed the MPYES diet produced more (P < 0.05) milk compared to those fed the MPNO and HPYES diets and tended (P = 0.08) to be more than the HPNO diet. Additionally, milk composition yields for the MPYES diet were significantly (P < 0.05) more than the HPYES diets and tended (P ≤ 0.10) to be more than the MPNO and HPNO diets. Milk efficiency was highest (P < 0.05) for the MPYES diet. Final BW, total gain, and growth rate of lambs were greater when their dams were fed the MPYES diet compared to MPNO and HPNO diets. Under our conditions, decreasing dietary protein from 170 to 151 g/kg did not negatively affect the performance of ewes and their lambs. Supplemental RPL and RPM were beneficial for ewes fed diets containing 151 g/kg, but not 170, protein.
Collapse
Affiliation(s)
- M S Awawdeh
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| |
Collapse
|
14
|
Corino C, Rossi R. Antioxidants in Animal Nutrition. Antioxidants (Basel) 2021; 10:1877. [PMID: 34942980 PMCID: PMC8698740 DOI: 10.3390/antiox10121877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is an imbalance between the production of free radicals and their neutralization by the antioxidants' defenses [...].
Collapse
Affiliation(s)
- Carlo Corino
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy;
| | | |
Collapse
|
15
|
Christodoulou C, Mavrommatis A, Mitsiopoulou C, Symeon G, Dotas V, Sotirakoglou K, Kotsampasi B, Tsiplakou E. Assessing the Optimum Level of Supplementation with Camelina Seeds in Ewes' Diets to Improve Milk Quality. Foods 2021; 10:foods10092076. [PMID: 34574185 PMCID: PMC8465129 DOI: 10.3390/foods10092076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 02/02/2023] Open
Abstract
Camelina sativa seeds are rich in bioactive compounds such as polyunsaturated fatty acids (PUFA) and antioxidants, thus, their supplementation in ewes’ diets, may be an effective way to develop high nutritional dairy products. Therefore, the present study investigates the effect of the dietary inclusion of Camelina sativa seeds in ewes’ oxidative status and milk quality. Forty-eight dairy Chios ewes were divided into four homogenous groups and were fed individually. The concentrate of the control group (CON) had no inclusion of Camelina seeds, while the treatment groups (CSS6, CSS11, CSS16) were supplemented with 6%, 11%, and 16%, respectively. Including Camelina seeds in 6% and 11%, had no impact on milk performance, while in the CSS16, milk fat was significantly decreased compared to the CON. Supplementing Camelina seeds improved milk quality from a human health perspective by modifying the content of saturated fatty acid, the proportions of α-linolenic (C18:3 n-3), and C18:2 cis-9, trans-11 (CLA), and the ω6/ω3 ratio. Furthermore, the activity of catalase (CAT) was significantly increased in the CSS11 and CSS16, and superoxide dismutase (SOD) activity also significantly upsurged in the CSS16. Still, the levels of malondialdehyde (MDA) were significantly increased in the CSS11 compared to the CON and CSS6, and in the CSS16 compared to the CSS6. In CSS16, protein carbonyls were significantly increased. Finally, in the CSS-fed ewes, milk oxidative stability was fortified, as suggested by the modifications in the activities of SOD, CAT, and glutathione peroxidase (GSH-Px), in the antioxidant capacity, and the oxidative stress biomarkers. Consequently, the incorporation of 6% Camelina seeds in the concentrates of ewes improves milk’s fatty acid profile and oxidative status. However, more research is required regarding the possible negative effects of the constant consumption of Camelina seeds by ewes.
Collapse
Affiliation(s)
- Christos Christodoulou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (C.C.); (A.M.); (C.M.)
| | - Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (C.C.); (A.M.); (C.M.)
| | - Christina Mitsiopoulou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (C.C.); (A.M.); (C.M.)
| | - George Symeon
- Research Institute of Animal Science, Hellenic Agricultural Organization—Demeter, 58100 Giannitsa, Greece; (G.S.); (B.K.)
| | - Vasilis Dotas
- Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Kyriaki Sotirakoglou
- Laboratory of Mathematics and Statistics, Department of Natural Resources and Agricultural Engineering, School of Environment and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Basiliki Kotsampasi
- Research Institute of Animal Science, Hellenic Agricultural Organization—Demeter, 58100 Giannitsa, Greece; (G.S.); (B.K.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (C.C.); (A.M.); (C.M.)
- Correspondence: ; Tel.: +30-21-0529-4435; Fax: +30-21-0529-4413
| |
Collapse
|
16
|
Mavrommatis A, Sotirakoglou K, Kamilaris C, Tsiplakou E. Effects of Inclusion of Schizochytrium spp. and Forage-to-Concentrate Ratios on Goats' Milk Quality and Oxidative Status. Foods 2021; 10:1322. [PMID: 34201334 PMCID: PMC8228103 DOI: 10.3390/foods10061322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Although the dietary inclusion level of polyunsaturated fatty acids (PUFA) and the forage: concentrate (F:C) ratio affect milk quality, their interaction has not been broadly studied. To address such gaps and limitations a two-phase trial using twenty-two dairy goats was carried out. During the first phase, both groups (20 HF n = 11; high forage and 20 HG n = 11; high grain) were supplemented with 20 g Schizochytrium spp./goat/day. The 20 HF group consumed a diet with F:C ratio 60:40 and the 20 HG-diet consisted of F:C = 40:60. In the second phase, the supplementation level of Schizochytrium spp. was increased to 40 g/day/goat while the F:C ratio between the two groups were remained identical (40 HF n = 11; high forage and 40 HG n = 11; high grain). Neither the Schizochytrium spp. supplementation levels (20 vs. 40) nor the F:C ratio (60:40 vs. 40:60) affected milk performance. The high microalgae level (40 g) in combination with high grain diet (40 HG) modified the proportions of docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and conjugated linoleic acid (CLA) and the ω3/ω6 ratio in milk, to a beneficial manner according to human health recommendation guidelines. However, the highest inclusion level of Schizochytrium spp. (40 g) and foremost in combination with the high grain diets (40 HG) induced an oxidative response as observed by the increased protein carbonyls (CP) and malondialdehyde (MDA) levels in milk and blood plasma indicating severe limitations for a long-term, on-farm application. In conclusion, the supplementation with 20 g Schizochytrium spp. and high forage diet (60:40) appears to be an ideal formula to enrich dairy products with essential biomolecules for human health without adversely affect milk oxidative stability.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| | - Kyriaki Sotirakoglou
- Laboratory of Mathematics and Statistics, Department of Natural Resources and Agricultural Engineering, School of Environment and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| | - Charalampos Kamilaris
- School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK;
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| |
Collapse
|