1
|
Nurzynska A, Klimek K, Michalak A, Dos Santos Szewczyk K, Arczewska M, Szalaj U, Gagos M, Ginalska G. Do Curdlan Hydrogels Improved with Bioactive Compounds from Hop Exhibit Beneficial Properties for Skin Wound Healing? Int J Mol Sci 2023; 24:10295. [PMID: 37373441 DOI: 10.3390/ijms241210295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic wounds, among others, are mainly characterized by prolonged inflammation associated with the overproduction of reactive oxygen species and pro-inflammatory cytokines by immune cells. As a consequence, this phenomenon hinders or even precludes the regeneration process. It is known that biomaterials composed of biopolymers can significantly promote the process of wound healing and regeneration. The aim of this study was to establish whether curdlan-based biomaterials modified with hop compounds can be considered as promising candidates for the promotion of skin wound healing. The resultant biomaterials were subjected to an evaluation of their structural, physicochemical, and biological in vitro and in vivo properties. The conducted physicochemical analyses confirmed the incorporation of bioactive compounds (crude extract or xanthohumol) into the curdlan matrix. It was found that the curdlan-based biomaterials improved with low concentrations of hop compounds possessing satisfactory hydrophilicity, wettability, porosity, and absorption capacities. In vitro, tests showed that these biomaterials were non-cytotoxic, did not inhibit the proliferation of skin fibroblasts, and had the ability to inhibit the production of pro-inflammatory interleukin-6 by human macrophages stimulated with lipopolysaccharide. Moreover, in vivo studies showed that these biomaterials were biocompatible and could promote the regeneration process after injury (study on Danio rerio larvae model). Thus, it is worth emphasizing that this is the first paper demonstrating that a biomaterial based on a natural biopolymer (curdlan) improved with hop compounds may have biomedical potential, especially in the context of skin wound healing and regeneration.
Collapse
Affiliation(s)
- Aleksandra Nurzynska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland
| | | | - Marta Arczewska
- Department of Biophysics, University of Life Sciences, Akademicka 13 Street, 20-033 Lublin, Poland
- Department of Biophysics, Medical University of Lublin, Jaczewskiego 4 Street, 20-090 Lublin, Poland
| | - Urszula Szalaj
- Laboratory of Nanostructures, Polish Academy of Science, Sokolowska 29/37 Street, 01-142 Warsaw, Poland
- Faculty of Materials Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Mariusz Gagos
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Single and Interactive Effects of Unmalted Cereals, Hops, and Yeasts on Quality of White-Inspired Craft Beers. BEVERAGES 2023. [DOI: 10.3390/beverages9010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
White beers owe their name to their straw yellow colour deriving from the use of unmalted wheat, which also supplies a relatively high protein content causing haze formation. This study aimed to develop white-inspired craft beers made with combinations of three mixtures of barley malt/unmalted wheat (alternatively durum-var. Dauno III, soft-var. Risciola, or emmer-var. Padre Pio), two hop varieties (Cascade or Columbus), and two Saccharomyces cerevisiae strains (Belgian yeast and a high-ester producing yeast); and assess the single and interactive effects of these ingredients on physical, chemical, and sensory characteristics of the beers. According to the graphical representation of the results for the Principal Component Analysis, most of the samples appear overlapped since they had similar characteristics, but it was possible to highlight two clusters of beers different from the others: those produced with (a) Risciola wheat and Columbus hop and (b) Dauno III wheat, Cascade hop, and the Belgian yeast. The beers of these clusters obtained the highest scores for their overall quality that, in turn, was positively correlated with concentrations of citric acid, 4-hydroxybenzoic acid, syringic acid, and epicatechin; alcohol %, colour, amount and persistence of foam, intensity of fruity flavour, and body.
Collapse
|
3
|
Chen DQ, Zou C, Huang YB, Zhu X, Contursi P, Yin JF, Xu YQ. Adding functional properties to beer with jasmine tea extract. Front Nutr 2023; 10:1109109. [PMID: 36937349 PMCID: PMC10020177 DOI: 10.3389/fnut.2023.1109109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Hops provide the characteristic bitter taste and attractive aroma to beer; in this study, hops were replaced by jasmine tea extract (JTE) during late-hopping. The addition of JTE improved the beer foam stability 1.52-fold, and increased the polyphenol and organic acid contents. Linalool was the most important aroma compound in hopped (HOPB) and jasmine tea beer (JTB), but other flavor components were markedly different, including dimeric catechins, flavone/flavonol glycosides, and bitter acids and derivatives. Sensory evaluation indicated that addition of JTE increased the floral and fresh-scent aromas, reduced bitterness and improved the organoleptic quality of the beer. The antioxidant capacity of JTB was much higher than that of HOPB. The inhibition of amylase activity by JTB was 30.5% higher than that of HOPB. Functional properties to beer were added by substituting jasmine tea extract for hops during late hopping.
Collapse
Affiliation(s)
- De-Quan Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun Zou
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- Chun Zou
| | - Yi-Bin Huang
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- College of Tea Science, Guizhou University, Guiyang, China
| | - Xuan Zhu
- School of Food and Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- *Correspondence: Yong-Quan Xu
| |
Collapse
|
4
|
Wine, beer and Chinese Baijiu in relation to cardiovascular health: the impact of moderate drinking. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Yeast Strains and Wort Color as Factors Affecting Effects of the Ethanol Fermentation Process. Molecules 2022; 27:molecules27133971. [PMID: 35807223 PMCID: PMC9268092 DOI: 10.3390/molecules27133971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Dark malts used in the production of brewing wort affect the ethanol fermentation process, the phenolic content, antioxidant capacity and the physiology of yeast cells. An innovative element of this research is the combination of investigating the effect of beer wort color modulated by the use of dark specialty malts on the course and effects of fermentation and the characteristics of post-fermentation yeast biomass of brewer’s strains with different characteristics. Dark and pale beer were obtained. The beers had different ethanol contents (4.51–5.79% v/v), resulting from real (62.29–80.36%) and apparent (75.37–98.26%) attenuation levels. Metabolic and morphological differences were demonstrated in the brewer’s yeast strains used. S. cerevisiae var. diastaticus was distinguished by its ability to ferment dextrin, resulting in the highest ethanol content in beers. The total phenolic content in beer depends on the color of the wort and the yeast strain used (244.48–547.56 mg of gallic acid/L). Dark beers show higher ferric ion reduction ability (FRAP) and antioxidant capacity (ABTS•+) than pale beers fermented with the same yeast strains. Through biomass analysis, differences in yeast cell physiology depending on yeast strain and beer wort color were also revealed.
Collapse
|
6
|
Salamon RV, Dabija A, Ferencz Á, Tankó G, Ciocan ME, Codină GG. The Effect of Dry Hopping Efficiency on β-Myrcene Dissolution into Beer. PLANTS (BASEL, SWITZERLAND) 2022; 11:1043. [PMID: 35448771 PMCID: PMC9027813 DOI: 10.3390/plants11081043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The production of heavily hopped beers, such as Indian Pale Ale (IPA) styles, has been gaining momentum in recent years in the Central European markets. To this end, the dry hopping process is becoming increasingly popular, mostly in microbreweries, but also with larger manufacturers. In our research, we investigated the dissolution rate of the main volatile component of hops, β-myrcene with a modified dry hopping method. Following the primary fermentation, we applied the dry hopping process, where the weighed hops were chopped and blended into a container with 0.5 L of beer and later added to the young beer. During the dry hopping process, we determined various important parameters of the beer, and we repeated the same measurements for the bottled beer. In the first 96 h of the dry hopping process, we monitored the concentration of β-myrcene so that we managed to determine the dissolution rate constant (k = 0.1946 h-1). The β-myrcene concentration stabilizes after 44 h in the fermenter. At the same time, measurements were conducted for bitterness, pH, CO2 and alcohol content, extract and density during the process. Our experiment demonstrates that a new method of dry hopping provides a much higher concentration of β-myrcene (215 μg/L) than other methods indicated in former studies in the field. A health and safety assessment of β-myrcene was also made and we determined what the safe amount of β-myrcene ingested with IPA beer is. Our modified process was successful, we were able to determine the dissolution rate of β-myrcene, and the recommended daily intake of IPA beer with particular reference to β-myrcene.
Collapse
Affiliation(s)
- Rozália Veronika Salamon
- Department of Food Science, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Piata Libertatii no. 1, 530104 Miercurea Ciuc, Romania; (R.V.S.); (Á.F.)
| | - Adriana Dabija
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.D.); (M.E.C.)
| | - Ágota Ferencz
- Department of Food Science, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Piata Libertatii no. 1, 530104 Miercurea Ciuc, Romania; (R.V.S.); (Á.F.)
| | - György Tankó
- Doctoral School of Food Science, Magyar Agár-és Élettudományi Egyetem, Str. Villányi 29-43, 1118 Budapest, Hungary;
| | - Marius Eduard Ciocan
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.D.); (M.E.C.)
| | - Georgiana Gabriela Codină
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.D.); (M.E.C.)
| |
Collapse
|
7
|
Kawa-Rygielska J, Adamenko K, Pietrzak W, Paszkot J, Głowacki A, Gasiński A. Characteristics of New England India Pale Ale Beer Produced with the Use of Norwegian KVEIK Yeast. Molecules 2022; 27:molecules27072291. [PMID: 35408689 PMCID: PMC9000580 DOI: 10.3390/molecules27072291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this research was to determine the potential of four unconventional Norwegian yeasts of the KVEIK type to produce NEIPA beer. The influence of yeast strains on fermentation process, physicochemical properties, antioxidant potential, volatile compounds, and sensory properties was investigated. The KVEIK-fermented beer did not differ in terms of physicochemical parameters from the beer produced with the commercial variants of US-05 yeast. The yeast strain influenced the sensory quality (taste and aroma) of the beers, with KVEIK-fermented beer rating significantly higher. The antioxidant activity of the tested beers also significantly depended on the yeast strain applied. The beers fermented with KVEIK had a significantly higher antioxidant potential (ABTS•+) than those fermented with US-05. The strongest antioxidant activity was found in the beer brewed with the Lida KVEIK yeast. The use of KVEIK to produce NEIPA beer allowed enrichment of the finished products with volatile compounds isobutanol, 2-pentanol, 3-methylobutanol, ethyl octanoate, and ethyl decanoate.
Collapse
|
8
|
Carvalho DO, Guido LF. A review on the fate of phenolic compounds during malting and brewing: Technological strategies and beer styles. Food Chem 2022; 372:131093. [PMID: 34619521 DOI: 10.1016/j.foodchem.2021.131093] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023]
Abstract
This review provides an overview on the influence of malting and brewing on the overall phenolic content of barley malt and beer. Beer phenolics are mainly originated from barley malt and can be found in free and bound forms, in concentrations up to 50% lower comparing to sweet wort. The use of roasted malts, in combination with proper milling and high mashing temperatures at low pH can lead to a release of bound phenolic forms and increased extraction. New technological strategies such as special yeasts, manipulation of enzymatic activity and dry-hopping may be relevant to improve the phenolic profile of beer and attain phenolic levels with benefits both for beer stability and consumer's health. As the content of free ferulic acid in beer only accounts up to approximately 15% of total content, further studies should put emphasis on its bound forms in different beer styles and non-alcoholic beers.
Collapse
Affiliation(s)
- Daniel O Carvalho
- REQUIMTE/LAQV - Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís F Guido
- REQUIMTE/LAQV - Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|