1
|
Gorini F, Tonacci A. Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment? Antioxidants (Basel) 2024; 13:1242. [PMID: 39456495 PMCID: PMC11505632 DOI: 10.3390/antiox13101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with an increased global incidence in recent decades, despite a substantially unchanged survival. While TC has an excellent overall prognosis, some types of TC are associated with worse patient outcomes, depending on the genetic setting. Furthermore, oxidative stress is related to more aggressive features of TC. Vitamin C, an essential nutrient provided with food or as a dietary supplement, is a well-known antioxidant and a scavenger of reactive oxygen species; however, at high doses, it can induce pro-oxidant effects, acting through multiple biological mechanisms that play a crucial role in killing cancer cells. Although experimental data and, less consistently, clinical studies, suggest the possibility of antineoplastic effects of vitamin C at pharmacological doses, the antitumor efficacy of this nutrient in TC remains at least partly unexplored. Therefore, this review discusses the current state of knowledge on the role of vitamin C, alone or in combination with other conventional therapies, in the management of TC, the mechanisms underlying this association, and the perspectives that may emerge in TC treatment strategies, and, also, in light of the development of novel functional foods useful to this extent, by implementing novel sensory analysis strategies.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
2
|
Sakhawat A, Awan SJ, Khan MU, Shahid S, Maqbool T, Zubair HM, Manzoor H, Khan S. In silico and in vitro analyses to investigate the effects of vitamin C on VEGF protein. J Taibah Univ Med Sci 2024; 19:775-789. [PMID: 39149519 PMCID: PMC11325796 DOI: 10.1016/j.jtumed.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/10/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024] Open
Abstract
Objectives This study was conducted to evaluate the effects of vitamin C on apoptotic and proliferative genes in injured HepG2 cells. Methods In silico analysis was performed using molecular docking of chemical compounds with vascular endothelial growth factor (VEGF). The different computational tools used were AutoDock Vina, BIOVIA DISCOVERY studio, and PyMOL. Drug likeness and toxicity were analyzed by SWISS ADMET. Cells that were 60-70% confluent were treated with different concentrations of hydrogen peroxide (H2O2) (100-2000 μM) and ascorbic acid (30, 60, 90 μg/mL). The MTT cell proliferation assay was performed to compare the proliferative potential of HepG2 cells treated with H2O2 or ascorbic acid with untreated HepG2 cells using 96-well plates. Results The lowest binding energy of VEGF with vitamin C -5.2 kcal/mol and L-ascorbic acid-2 glycoside -4.7 kcal/mol was observed by in silico analysis. Vitamin C was selected because it exhibited a high interaction with VEGF and fulfilled Lipinski's rule, and had better oral viability and pharmacokinetics compared to L-ascorbic acid-2 glycoside. Cell viability assays showed that vitamin C had significant apoptotic effects (P < 0.0001). After treating HepG2 cells with ascorbic acid, reduced VEGF (angiogenesis) was observed as determined by apoptotic and proliferative gene expression. Ascorbic acid treatment of HepG2 cells led to downregulation of the proliferation markers, proliferating cell nuclear antigen, Ki67, and DNA topoisomerase II alpha. Increased apoptosis after treatment with vitamin C was observed due to upregulation of p53 and annexin V. Conclusion The results of this study showed that vitamin C inhibited the growth of cancer cells, thus protecting HepG2 cells from oxidative stress. Vitamin C exhibited antiproliferative activity as observed in silico and in vitro, as well as by the inhibited expression of genes involved in protein synthesis.
Collapse
Affiliation(s)
- Azra Sakhawat
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sana Javaid Awan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Department of Biotechnology, Kinnaird College for Women University, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Samiah Shahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Hafiz Muhammad Zubair
- Postgraduate Medical College, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Hina Manzoor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Samiullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Faculty of Biotechnology and Life Sciences, INTI International University Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
3
|
Zhang W, Liu E, Que H. Association of circulating vitamin levels with thyroid diseases: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1360851. [PMID: 38919472 PMCID: PMC11196410 DOI: 10.3389/fendo.2024.1360851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/10/2024] [Indexed: 06/27/2024] Open
Abstract
Background Previous observational studies have shown conflicting results of vitamins supplementation for thyroid diseases. The causal relationships between vitamins and thyroid diseases are unclear. Therefore, we conducted a two-sample bidirectional Mendelian randomization (MR) study to explore association of circulating vitamin levels with thyroid diseases. Methods We performed a bidirectional MR analysis using genome-wide association study (GWAS) data. Genetic tool variables for circulating vitamin levels include vitamins A, B9, B12, C, D, and E, Genetic tool variables of thyroid diseases include autoimmune hyperthyroidism, autoimmune hypothyroidism, thyroid nodules (TNs), and Thyroid cancer (TC). Inverse-variance weighted multiplicative random effects (IVW-RE) was mainly used for MR Analysis, weighted median (WM) and MR Egger were used as supplementary methods to evaluate the relationships between circulating vitamin levels and thyroid diseases. Sensitivity and pluripotency were evaluated by Cochran's Q test, MR-PRESSO, Radial MR, MR-Egger regression and leave-one-out analysis. Results Positive MR evidence suggested that circulating vitamin C level is a protective factor in autoimmune hypothyroidism (ORIVW-RE=0.69, 95%CI: 0.58-0.83, p = 1.05E-04). Reverse MR Evidence showed that genetic susceptibility to autoimmune hyperthyroidism is associated with reduced level of circulating vitamin A(ORIVW-RE = 0.97, 95% CI: 0.95-1.00, p = 4.38E-02), genetic susceptibility of TNs was associated with an increased level of circulating vitamin D (ORIVW-RE = 1.02, 95% CI: 1.00-1.03, p = 6.86E-03). No causal and reverse causal relationship was detected between other circulating vitamin levels and thyroid diseases. Conclusion Our findings provide genetic evidence supporting a bi-directional causal relationship between circulating vitamin levels and thyroid diseases. These findings provide information for the clinical application of vitamins prevention and treatment of thyroid diseases.
Collapse
Affiliation(s)
- Wenke Zhang
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Erhao Liu
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huafa Que
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Abooshahab R, Razavi F, Ghorbani F, Hooshmand K, Zarkesh M, Hedayati M. Thyroid cancer cell metabolism: A glance into cell culture system-based metabolomics approaches. Exp Cell Res 2024; 435:113936. [PMID: 38278284 DOI: 10.1016/j.yexcr.2024.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Thyroid cancer is the most common malignancy of the endocrine system and the seventh most prevalent cancer in women worldwide. It is a complex and diverse disease characterized by heterogeneity, underscoring the importance of understanding the underlying metabolic alterations within tumor cells. Metabolomics technologies offer a powerful toolset to explore and identify endogenous and exogenous biochemical reaction products, providing crucial insights into the intricate metabolic pathways and processes within living cells. Metabolism plays a central role in cell function, making metabolomics a valuable reflection of a cell's phenotype. In the OMICs era, metabolomics analysis of cells brings numerous advantages over existing methods, propelling cell metabolomics as an emerging field with vast potential for investigating metabolic pathways and their perturbation in pathophysiological conditions. This review article aims to look into recent developments in applying metabolomics for characterizing and interpreting the cellular metabolome in thyroid cancer cell lines, exploring their unique metabolic characteristics. Understanding the metabolic alterations in tumor cells can lead to the identification of critical nodes in the metabolic network that could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Fatemeh Razavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghorbani
- Department of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | | | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Gorini F, Tonacci A. Tumor Microbial Communities and Thyroid Cancer Development-The Protective Role of Antioxidant Nutrients: Application Strategies and Future Directions. Antioxidants (Basel) 2023; 12:1898. [PMID: 37891977 PMCID: PMC10604861 DOI: 10.3390/antiox12101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Thyroid cancer (TC), the most frequent malignancy of the endocrine system, has recorded an increasing incidence in the last decades. The etiology of TC remains at least partly unknown and, among modifiable risk factors, the gut microbiota and dietary nutrients (vitamins, essential microelements, polyphenols, probiotics) have been recognized to not only influence thyroid function, but exert critical effects on TC development and progression. Recent discoveries on the existence of tumor microbiota also in the TC microenvironment provide further evidence for the essential role of tumor microorganisms in TC etiology and severity, as well as acting as prognostic markers and as a potential target of adjuvant care in the treatment of TC patients. Therefore, in this review, we summarize current knowledge on the relationship of the tumor microbiome with the clinical tumor characteristics and TC progression, also illustrating the molecular mechanisms underlying this association, and how antioxidant nutrients may be used as a novel strategy to both control gut health and reduce the risk for TC. Furthermore, we discuss how new technologies might be exploited for the development of new foods with high nutritional values, antioxidant capability, and even attractiveness to the individual in terms of sensory and emotional features.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
6
|
He X, Wei Y, Wu J, Wang Q, Bergholz JS, Gu H, Zou J, Lin S, Wang W, Xie S, Jiang T, Lee J, Asara JM, Zhang K, Cantley LC, Zhao JJ. Lysine vitcylation is a novel vitamin C-derived protein modification that enhances STAT1-mediated immune response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546774. [PMID: 37425798 PMCID: PMC10327172 DOI: 10.1101/2023.06.27.546774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Vitamin C (vitC) is a vital nutrient for health and also used as a therapeutic agent in diseases such as cancer. However, the mechanisms underlying vitC's effects remain elusive. Here we report that vitC directly modifies lysine without enzymes to form vitcyl-lysine, termed "vitcylation", in a dose-, pH-, and sequence-dependent manner across diverse proteins in cells. We further discover that vitC vitcylates K298 site of STAT1, which impairs its interaction with the phosphatase PTPN2, preventing STAT1 Y701 dephosphorylation and leading to increased STAT1-mediated IFN pathway activation in tumor cells. As a result, these cells have increased MHC/HLA class-I expression and activate immune cells in co-cultures. Tumors collected from vitC-treated tumor-bearing mice have enhanced vitcylation, STAT1 phosphorylation and antigen presentation. The identification of vitcylation as a novel PTM and the characterization of its effect in tumor cells opens a new avenue for understanding vitC in cellular processes, disease mechanisms, and therapeutics.
Collapse
|
7
|
Fan D, Liu X, Shen Z, Wu P, Zhong L, Lin F. Cell signaling pathways based on vitamin C and their application in cancer therapy. Biomed Pharmacother 2023; 162:114695. [PMID: 37058822 DOI: 10.1016/j.biopha.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Vitamin C, a small organic molecule, is widely found in fruits and vegetables and is an essential nutrient in the human body. Vitamin C is closely associated with some human diseases such as cancer. Many studies have shown that high doses of vitamin C have anti-tumor ability and can target tumor cells in multiple targets. This review will describe vitamin C absorption and its function in cancer treatment. We will review the cellular signaling pathways associated with vitamin C against tumors depending on the different anti-cancer mechanisms. Based on this, we will further describe some applications of the use of vitamin C for cancer treatment in preclinical and clinical trials and the possible adverse events that can occur. Finally, this review also assesses the prospective advantages of vitamin C in oncology treatment and clinical applications.
Collapse
Affiliation(s)
- Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Faquan Lin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education,Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University.
| |
Collapse
|
8
|
Glutamine Starvation Affects Cell Cycle, Oxidative Homeostasis and Metabolism in Colorectal Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12030683. [PMID: 36978930 PMCID: PMC10045305 DOI: 10.3390/antiox12030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer cells adjust their metabolism to meet energy demands. In particular, glutamine addiction represents a distinctive feature of several types of tumors, including colorectal cancer. In this study, four colorectal cancer cell lines (Caco-2, HCT116, HT29 and SW480) were cultured with or without glutamine. The growth and proliferation rate, colony-forming capacity, apoptosis, cell cycle, redox homeostasis and metabolomic analysis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT), flow cytometry, high-performance liquid chromatography and gas chromatography/mass spectrometry techniques. The results show that glutamine represents an important metabolite for cell growth and that its deprivation reduces the proliferation of colorectal cancer cells. Glutamine depletion induces cell death and cell cycle arrest in the GO/G1 phase by modulating energy metabolism, the amino acid content and antioxidant defenses. Moreover, the combined glutamine starvation with the glycolysis inhibitor 2-deoxy-D-glucose exerted a stronger cytotoxic effect. This study offers a strong rationale for targeting glutamine metabolism alone or in combination with glucose metabolism to achieve a therapeutic benefit in the treatment of colon cancer.
Collapse
|
9
|
Dettori T, Sanna G, Cocco A, Serreli G, Deiana M, Palmas V, Onnis V, Pilia L, Melis N, Moi D, Caria P, Secci F. Synthesis and Antiproliferative Effect of Halogenated Coumarin Derivatives. Molecules 2022; 27:molecules27248897. [PMID: 36558029 PMCID: PMC9786284 DOI: 10.3390/molecules27248897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
A series of 6- and 6,8-halocoumarin derivatives have been investigated as potential antiproliferative compounds against a panel of tumor and normal cell lines. Cytotoxic effects were determined by the MTT method. To investigate the potential molecular mechanism involved in the cytotoxic effect, apoptosis assay, cell cycle analysis, reactive oxygen species (ROS), and reduced glutathione analysis were performed. Among the screened compounds, coumarins 6,8-dibromo-2-oxo-2H-chromene-3-carbonitrile 2h and 6,8-diiodo-2-oxo-2H-chromene-3-carbonitrile 2k exhibited the most antiproliferative effect in thyroid cancer-derived cells TPC-1. The apoptosis assay showed that both 2h and 2k induced apoptosis in TPC-1 thyroid cancer cells. According to these experiments, both coumarins induced a slight increase in TPC-1 cells in the G2/M phase and a decrease in the S phase. A significant increase in ROS levels was observed in TPC-1 treated with diiodocoumarin 2k, while the dibromocoumarin 2h induced a decrease in ROS in a dose and time-dependent manner.
Collapse
Affiliation(s)
- Tinuccia Dettori
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Andrea Cocco
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Luca Pilia
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, 09123 Cagliari, CA, Italy
| | - Nicola Melis
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, 09123 Cagliari, CA, Italy
| | - Davide Moi
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| | - Francesco Secci
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| |
Collapse
|
10
|
Pani F, Caria P, Yasuda Y, Makoto M, Mariotti S, Leenhardt L, Roshanmehr S, Caturegli P, Buffet C. The Immune Landscape of Papillary Thyroid Cancer in the Context of Autoimmune Thyroiditis. Cancers (Basel) 2022; 14:cancers14174287. [PMID: 36077831 PMCID: PMC9454449 DOI: 10.3390/cancers14174287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The association between papillary thyroid cancer and Hashimoto’s thyroiditis went through a long-standing human debate recently elucidated by the establishment of a novel mouse model. Papillary thyroid carcinoma is an excellent model for studying the tumor immune microenvironment because it is naturally accompanied by immune cells, making it a good candidate for the treatment with immune checkpoint inhibitors. Abstract Papillary thyroid cancer (PTC) often co-occurs with Hashimoto’s thyroiditis, an association that has long been reported in clinical studies, remaining controversial. Experimental evidence has recently shown that pre-existing thyroiditis has a beneficial effect on PTC growth and progression by a distinctive expansion of effector memory CD8 T cells. Although the link between inflammation and PTC might involve different components of the immune system, a deep characterization of them which includes T cells, B cells and tertiary lymphoid structures, Mye-loid cells, Neutrophils, NK cells and dendritic cells will be desirable. The present review article considers the role of the adaptive and innate immune response surrounding PTC in the context of Hashimoto’s thyroiditis. This review will focus on the current knowledge by in vivo and in vitro studies specifically performed on animals’ models; thyroid cancer cells and human samples including (i) the dual role of tumor-infiltrating lymphocytes; (ii) the emerging role of B cells and tertiary lymphoid structures; (iii) the role of myeloid cells, dendritic cells, and natural killer cells; (iv) the current knowledge of the molecular biomarkers implicated in the complex link between thyroiditis and PTC and the potential implication of cancer immunotherapy in PTC patients in the context of thyroiditis.
Collapse
Affiliation(s)
- Fabiana Pani
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
- Correspondence: or
| | - Paola Caria
- Department of Biomedical Sciences, Biochemistry, Biology and Genetics Unit, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Km 0.700, Monserrato, 09042 Cagliari, Italy
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Miyara Makoto
- Inserm, Centre d’Immunologie et des Maladies Infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stefano Mariotti
- Department of Medical Sciences and Public Health, Endocrinology Unit, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Laurence Leenhardt
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| | - Solmaz Roshanmehr
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Camille Buffet
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| |
Collapse
|
11
|
Grudlewska-Buda K, Wiktorczyk-Kapischke N, Budzyńska A, Kwiecińska-Piróg J, Przekwas J, Kijewska A, Sabiniarz D, Gospodarek-Komkowska E, Skowron K. The Variable Nature of Vitamin C—Does It Help When Dealing with Coronavirus? Antioxidants (Basel) 2022; 11:antiox11071247. [PMID: 35883738 PMCID: PMC9312329 DOI: 10.3390/antiox11071247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still spreading worldwide. For this reason, new treatment methods are constantly being researched. Consequently, new and already-known preparations are being investigated to potentially reduce the severe course of coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection induces the production of pro-inflammatory cytokines and acute serum biomarkers in the host organism. In addition to antiviral drugs, there are other substances being used in the treatment of COVID-19, e.g., those with antioxidant properties, such as vitamin C (VC). Exciting aspects of the use of VC in antiviral therapy are its antioxidant and pro-oxidative abilities. In this review, we summarized both the positive effects of using VC in treating infections caused by SARS-CoV-2 in the light of the available research. We have tried to answer the question as to whether the use of high doses of VC brings the expected benefits in the treatment of COVID-19 and whether such treatment is the correct therapeutic choice. Each case requires individual assessment to determine whether the positives outweigh the negatives, especially in the light of populational studies concerning the genetic differentiation of genes encoding the solute carriers responsible forVC adsorption. Few data are available on the influence of VC on the course of SARS-CoV-2 infection. Deducing from already-published data, high-dose intravenous vitamin C (HDIVC) does not significantly lower the mortality or length of hospitalization. However, some data prove, among other things, its impact on the serum levels of inflammatory markers. Finally, the non-positive effect of VC administration is mainly neutral, but the negative effect is that it can result in urinary stones or nephropathies.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Jana Przekwas
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Agnieszka Kijewska
- Department of Immunobiology and Environmental Biology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | | | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
- Correspondence: ; Tel.: +48-(52)-585-38-38
| |
Collapse
|
12
|
Mir HA, Ali R, Wani ZA, Khanday FA. Pro-oxidant vitamin C mechanistically exploits p66Shc/Rac1GTPase pathway in inducing cytotoxicity. Int J Biol Macromol 2022; 205:154-168. [PMID: 35181322 DOI: 10.1016/j.ijbiomac.2022.02.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 12/25/2022]
Abstract
P66Shc is the master regulator of oxidative stress whose pro-oxidant functioning is governed by ser36 phosphorylation. Phosphorylated p66Shc via Rac1GTPase activation modulates ROS levels which in turn influence its pro-oxidative functions. Vitamin C at higher concentrations exhibits cytotoxic activity in various cancers, inducing ROS mediated cell death via pro-apoptotic mechanisms. Here we show a novel role of p66Shc in mediating pro-oxidant activity of vitamin C. Effect of vitamin C on the viability of breast cancer and normal cells was studied. High doses of vitamin C decreased viability of cancerous cells but not normal cells. Docking study displayed significant binding affinity of vitamin C with p66Shc PTB domain. Western blot results suggest that vitamin C not only enhances p66Shc expression but also induces its ser36 phosphorylation. Vitamin C at high doses was also found to activate Rac1, enhance ROS production and induce apoptosis. Interestingly, ser36 phosphorylation mutant transfection and pretreatment with antioxidant N-acetylcysteine results indicate that vitamin C induced Rac1 activation, ROS production and apoptosis is p66Shc ser36 phosphorylation dependent. Overall, results highlight that vitamin C mechanistically explores p66Shc/Rac1 pathway in inducing apoptosis and thus can pave a way to use this pathway as a potential therapeutic target in breast cancers.
Collapse
Affiliation(s)
- Hilal Ahmad Mir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Roshia Ali
- Department of Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Zahoor Ahmad Wani
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Firdous Ahmad Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
13
|
Cocco A, Caria P, Sanna G, Stagi L, Cadoni E, Corpino R, Ricci PC, Carbonaro CM, Secci F. Synthesis and Photophysical Properties of Fluorescent 6-Aryl-D-π-A Coumarin Derivatives. ACS OMEGA 2021; 6:33708-33716. [PMID: 34926919 PMCID: PMC8675031 DOI: 10.1021/acsomega.1c04810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
A series of 6-aryl coumarin dyes were synthesized in satisfactory yields by Pd-catalyzed Suzuki cross-coupling reactions with a panel of boronic acids and coumarin bromides. Photophysical studies highlighted a large Stoke shift and interesting fluorescence quantum yield for these compounds. Optical properties were also investigated with the aid of quantum chemical calculations. The treatment of selected coumarin dyes with increasing amounts of trifluoroacetic acid showed that their fluorescence can be strongly influenced by pH (fluorescence quenching at high acid concentrations), while the addition of Fe3+ and Al3+ metal ions allowed to highlight dichotomous behavior with the corresponding reduction in fluorescence with the increase of [Fe3+] or [Al3+]. Finally, biological assays and fluorescence microscopy imaging investigations indicated that these compounds can be used as potential biomarkers in living and fixed cells.
Collapse
Affiliation(s)
- Andrea Cocco
- Department
of Chemical and Geological Sciences, University
of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Paola Caria
- Department
of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Giuseppina Sanna
- Department
of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Luigi Stagi
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology,
CR-INSTM, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Enzo Cadoni
- Department
of Chemical and Geological Sciences, University
of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Riccardo Corpino
- Department
of Physics, University of Cagliari, SP 8, Monserrato, 09042 Cagliari, Italy
| | - Pier Carlo Ricci
- Department
of Physics, University of Cagliari, SP 8, Monserrato, 09042 Cagliari, Italy
| | - Carlo Maria Carbonaro
- Department
of Physics, University of Cagliari, SP 8, Monserrato, 09042 Cagliari, Italy
| | - Francesco Secci
- Department
of Chemical and Geological Sciences, University
of Cagliari, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
14
|
Böttger F, Vallés-Martí A, Cahn L, Jimenez CR. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:343. [PMID: 34717701 PMCID: PMC8557029 DOI: 10.1186/s13046-021-02134-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022]
Abstract
Mounting evidence indicates that vitamin C has the potential to be a potent anti-cancer agent when administered intravenously and in high doses (high-dose IVC). Early phase clinical trials have confirmed safety and indicated efficacy of IVC in eradicating tumour cells of various cancer types. In recent years, the multi-targeting effects of vitamin C were unravelled, demonstrating a role as cancer-specific, pro-oxidative cytotoxic agent, anti-cancer epigenetic regulator and immune modulator, reversing epithelial-to-mesenchymal transition, inhibiting hypoxia and oncogenic kinase signalling and boosting immune response. Moreover, high-dose IVC is powerful as an adjuvant treatment for cancer, acting synergistically with many standard (chemo-) therapies, as well as a method for mitigating the toxic side-effects of chemotherapy. Despite the rationale and ample evidence, strong clinical data and phase III studies are lacking. Therefore, there is a need for more extensive awareness of the use of this highly promising, non-toxic cancer treatment in the clinical setting. In this review, we provide an elaborate overview of pre-clinical and clinical studies using high-dose IVC as anti-cancer agent, as well as a detailed evaluation of the main known molecular mechanisms involved. A special focus is put on global molecular profiling studies in this respect. In addition, an outlook on future implications of high-dose vitamin C in cancer treatment is presented and recommendations for further research are discussed.
Collapse
Affiliation(s)
- Franziska Böttger
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Andrea Vallés-Martí
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Loraine Cahn
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|