1
|
Gudiño I, Casquete R, Martín A, Wu Y, Benito MJ. Comprehensive Analysis of Bioactive Compounds, Functional Properties, and Applications of Broccoli By-Products. Foods 2024; 13:3918. [PMID: 39682990 DOI: 10.3390/foods13233918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Broccoli by-products, traditionally considered inedible, possess a comprehensive nutritional and functional profile. These by-products are abundant in glucosinolates, particularly glucoraphanin, and sulforaphane, an isothiocyanate renowned for its potent antioxidant and anticarcinogenic properties. Broccoli leaves are a significant source of phenolic compounds, including kaempferol and quercetin, as well as pigments, vitamins, and essential minerals. Additionally, they contain proteins, essential amino acids, lipids, and carbohydrates, with the leaves exhibiting the highest protein content among the by-products. Processing techniques such as ultrasound-assisted extraction and freeze-drying are crucial for maximizing the concentration and efficacy of these bioactive compounds. Advanced analytical methods, such as high-performance liquid chromatography-mass spectrometry (HPLC-MS), have enabled precise characterization of these bioactives. Broccoli by-products have diverse applications in the food industry, enhancing the nutritional quality of food products and serving as natural substitutes for synthetic additives. Their antioxidant, antimicrobial, and anti-inflammatory properties not only contribute to health promotion but also support sustainability by reducing agricultural waste and promoting a circular economy, thereby underscoring the value of these often underutilized components.
Collapse
Affiliation(s)
- Iris Gudiño
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Alberto Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
2
|
Al-Sudani WKK, Al-Shammari RSS, Abed MS, Al-Saedi JH, Mernea M, Lungu II, Dumitrache F, Mihailescu DF. The Impact of ZnO and Fe 2O 3 Nanoparticles on Sunflower Seed Germination, Phenolic Content and Antiglycation Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:1724. [PMID: 38999564 PMCID: PMC11243503 DOI: 10.3390/plants13131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
The enhancement of seed germination by using nanoparticles (NPs) holds the potential to elicit the synthesis of more desired compounds with important biomedical applications, such as preventing protein glycation, which occurs in diabetes. Here, we used 7 nm and 100 nm ZnO and 4.5 nm and 16.7 nm Fe2O3 NPs to treat sunflower seeds. We evaluated the effects on germination, total phenolic content, and the anti-glycation potential of extracted polyphenols. Sunflower seeds were allowed to germinate in vitro after soaking in NP solutions of different concentrations. Polyphenols were extracted, dosed, and used in serum albumin glycation experiments. The germination speed of seeds was significantly increased by the 100 nm ZnO NPs and significantly decreased by the 4.5 nm Fe2O3 NPs. The total phenolic content (TPC) of seeds was influenced by the type of NP, as ZnO NPs enhanced TPC, and the size of the NPs, as smaller NPs led to improved parameters. The polyphenols extracted from seeds inhibited protein glycation, especially those extracted from seeds treated with 7 nm ZnO. The usage of NPs impacted the germination speed and total polyphenol content of sunflower seeds, highlighting the importance of NP type and size in the germination process.
Collapse
Affiliation(s)
- Waleed Khaled Kaddem Al-Sudani
- Interdisciplinary School of Doctoral Studies, University of Bucharest, 36–46 Mihail Kogălniceanu Bd, 050107 Bucharest, Romania;
- Ministry of Trade in Iraq, The General Company for Foodstuff Trade, Al Mansour, Baghdad 10013, Iraq
| | - Rawaa Shakir Shnain Al-Shammari
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania; (R.S.S.A.-S.); (J.H.A.-S.); (D.F.M.)
- Ministry of Agriculture in Iraq, Al Wazeria, Baghdad 10053, Iraq
| | - Mohammed Saheb Abed
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania;
- Al-Mussaib Technical Institute, Al-Furat Al-Awsat Technical University, Babylon 51009, Iraq
| | - Jasim Hafedh Al-Saedi
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania; (R.S.S.A.-S.); (J.H.A.-S.); (D.F.M.)
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania; (R.S.S.A.-S.); (J.H.A.-S.); (D.F.M.)
| | - Iulia Ioana Lungu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.I.L.); (F.D.)
| | - Florian Dumitrache
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.I.L.); (F.D.)
| | - Dan Florin Mihailescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania; (R.S.S.A.-S.); (J.H.A.-S.); (D.F.M.)
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Psychiatric Hospital, Șoseaua Berceni 10 Str., 041914 Bucharest, Romania
| |
Collapse
|
3
|
Stoica R, Ganciarov M, Constantinescu-Aruxandei D, Capră L, Șuică-Bunghez IR, Senin RM, Pricope GD, Ivan GR, Călin C, Oancea F. Sustainable Recovery of Anthocyanins and Other Polyphenols from Red Cabbage Byproducts. Foods 2023; 12:4157. [PMID: 38002214 PMCID: PMC10669996 DOI: 10.3390/foods12224157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this work was to develop a sustainable process for the extraction of anthocyanins from red cabbage byproducts using, for the first time, apple vinegar in extractant composition. Our results showed that the mixture 50% (v/v) ethanol-water, acidified with apple vinegar, used in the proportion of 25 g of red cabbage by-products per 100 mL of solvent, was the best solvent for the preparation of an anthocyanin extract with good stability for food applications. The chemical characterization of this extract was performed by FTIR, UV-VIS, HPLC-DAD, and ICP-OES. The stability was evaluated by determining the dynamics of the total polyphenol content (TPC) and the total monomeric anthocyanin pigment content (TAC) during storage. On the basis of the statistical method for analysis of variance (ANOVA), the standard deviation between subsamples and the repeatability standard deviation were determined. The detection limit of the stability test of TPC was 3.68 mg GAE/100 g DW and that of TAC was 0.79 mg Cyd-3-Glu/100 g DW. The red cabbage extract has high TPC and TAC, good stability, and significant application potential. The extracted residues, depleted of anthocyanins and polyphenols with potential allelopathic risks, fulfill the requirements for a fertilizing product and could be used for soil treatment.
Collapse
Affiliation(s)
- Rusăndica Stoica
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Mihaela Ganciarov
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Diana Constantinescu-Aruxandei
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Luiza Capră
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Ioana-Raluca Șuică-Bunghez
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Raluca-Mădălina Senin
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Georgiana Diana Pricope
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Georgeta-Ramona Ivan
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Costin Călin
- Iprint3D Design & Consulting Srl, Str. George Enescu No.5, Sector 3, 030167 Bucharest, Romania;
| | - Florin Oancea
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
4
|
Aloo SO, Ofosu FK, Muchiri MN, Vijayalakshmi S, Pyo CG, Oh DH. In Vitro Bioactivities of Commonly Consumed Cereal, Vegetable, and Legume Seeds as Related to Their Bioactive Components: An Untargeted Metabolomics Approach Using UHPLC-QTOF-MS 2. Antioxidants (Basel) 2023; 12:1501. [PMID: 37627496 PMCID: PMC10451260 DOI: 10.3390/antiox12081501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
We conducted a comprehensive evaluation of the antioxidant, anti-obesity, anti-diabetic, and anti-glycation activities associated with the consumption of broccoli, red cabbage, alfalfa, and buckwheat seeds. Additionally, we explored the relationship between these biological activities and the profiles of amino acids, polyphenols, and organic acids identified in the seeds. Our findings demonstrated that red cabbage, broccoli, and buckwheat extracts exhibited significantly higher antioxidant potential compared to the alfalfa extract. Moreover, buckwheat displayed the most significant capacity for inhibiting alpha-glucosidase. Remarkably, broccoli and red cabbage demonstrated substantial anti-glycation and lipase inhibitory potentials. We identified the presence of amino acids, polyphenols, and organic acids in the extracts through untargeted metabolomics analysis. Correlation analysis revealed that pyroglutamic acid positively correlated with all the investigated functional properties. Most polyphenols made positive contributions to the functional properties, with the exception of ferulic acid, which displayed a negative correlation with all tested biological activities. Furthermore, gluconic acid and arabinonic acid among the organic acids identified displayed a positive correlation with all the functional properties. These results strongly support the anti-diabetic, anti-obesity, and anti-glycation potential of red cabbage, broccoli, and buckwheat seeds.
Collapse
Affiliation(s)
- Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
| | - Mary Njeri Muchiri
- Department of Food Science and Nutrition, School of Agriculture and Biotechnology, Karatina University, Nyeri 1957-10101, Kenya;
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Choi-Geun Pyo
- Department of Barista and Bakery, Gangwon State University, Gangneung 25425, Gangwon, Republic of Korea;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
| |
Collapse
|
5
|
Insights on Dietary Polyphenols as Agents against Metabolic Disorders: Obesity as a Target Disease. Antioxidants (Basel) 2023; 12:antiox12020416. [PMID: 36829976 PMCID: PMC9952395 DOI: 10.3390/antiox12020416] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Obesity is a condition that leads to increased health problems associated with metabolic disorders. Synthetic drugs are available for obesity treatment, but some of these compounds have demonstrated considerable side effects that limit their use. Polyphenols are vital phytonutrients of plant origin that can be incorporated as functional food ingredients. This review presents recent developments in dietary polyphenols as anti-obesity agents. Evidence supporting the potential application of food-derived polyphenols as agents against obesity has been summarized. Literature evidence supports the effectiveness of plant polyphenols against obesity. The anti-obesity mechanisms of polyphenols have been explained by their potential to inhibit obesity-related digestive enzymes, modulate neurohormones/peptides involved in food intake, and their ability to improve the growth of beneficial gut microbes while inhibiting the proliferation of pathogenic ones. Metabolism of polyphenols by gut microbes produces different metabolites with enhanced biological properties. Thus, research demonstrates that dietary polyphenols can offer a novel path to developing functional foods for treating obesity. Upcoming investigations need to explore novel techniques, such as nanocarriers, to improve the content of polyphenols in foods and their delivery and bioavailability at the target sites in the body.
Collapse
|
6
|
Azarashkan Z, Motamedzadegan A, Ghorbani‐HasanSaraei A, Biparva P, Rahaiee S. Investigation of the physicochemical, antioxidant, rheological, and sensory properties of ricotta cheese enriched with free and nano-encapsulated broccoli sprout extract. Food Sci Nutr 2022; 10:4059-4072. [PMID: 36348770 PMCID: PMC9632186 DOI: 10.1002/fsn3.3001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to produce the functional ricotta cheese using broccoli sprouts extract (BSE) and to evaluate its physicochemical, antioxidant, rheological, and sensory properties. The BSE nano-liposome was nano-encapsulated into basil seed gum (BSG) and was incorporated into the ricotta cheese formulation in two forms of free and nano-capsules in two levels of 3% and 5% w/w. The measurements were conducted during a 15-day storage period at 4-6°C. The results showed that the titratable acidity, hardness, and chewiness of cheeses were increased and the pH, moisture, total phenol content (TPC), and antioxidant activity were decreased (p < .05). With the addition of BSE concentration, the TPC and antioxidant activity increased significantly (p < .05) and applying the nano-encapsulation method for BSE led to better preservation of bioactive compounds. Based on the rheological results, viscoelastic solid behavior and a weak gel were observed in all cheese samples. The results of sensory evaluation demonstrated that cheeses containing free extract had lower flavor and overall acceptability scores than other samples, which indicates that the nano-encapsulation covered the undesirable flavor of the BSE. Generally, during the 15-day cold storage period, the highest sensory acceptance and functional activity were related to the samples containing nano-encapsulated BSE, especially at the 5% level.
Collapse
Affiliation(s)
- Zahra Azarashkan
- Department of Food Science and Technology, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran
| | - Ali Motamedzadegan
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resource UniversitySariIran
| | | | - Pourya Biparva
- Department of Basic SciencesSari University of Agricultural Sciences and Natural ResourcesSariIran
| | - Somayeh Rahaiee
- Department of Microbial Biotechnology, Faculty of BiotechnologyAmol University of Special Modern TechnologiesAmolIran
| |
Collapse
|
7
|
Kehinde BA, Majid I, Hussain S. Isolation of bioactive peptides and multiple nutraceuticals of antidiabetic and antioxidant functionalities through sprouting: Recent advances. J Food Biochem 2022; 46:e14317. [PMID: 35867040 DOI: 10.1111/jfbc.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
The employment of proteases directly from enzymes or indirectly from microorganisms during fermentation for the purpose of proteolysis of food proteins has been the conventional trend for the derivation of bioactive peptides from food matrices. However, recent studies have shown that inherent protease enzymes can be activated for this activity for vegetable foods using the sprouting process. The benefits of ease of operation, and reduced processing costs are formidable advantages for the optimal consideration of this technique. On another note, the demand for functional foods with therapeutic health effects has increased in recent years. Globally, plant foods are perceived as dietetic choices bearing sufficient quantities of concomitant nutraceuticals. In this manuscript, the sprouting route for the isolation of peptides and glucosinolates, and for the enhancement of total phenolic contents, polyunsaturated fatty acid profiles, and other bioactive constituents was explored. Advances regarding the phytochemical transformations in the course of sprouting, the therapeutic functionalities, and microbiological safety concerns of vegetable sprouts are delineated. In addition, consumption of vegetable sprouts has been shown to be more efficient in supplying nutraceutical components relative to their unsprouted counterparts. Biochemical mechanisms involving the inhibition of digestive enzymes such as α-amylase, β-glucosidase, and dipeptidyl peptidase IV (DPP-IV), single electron transfer, and metal chelation, for impartation of health benefits, have been reported to occur from bioactive components isolated from vegetable sprouts. PRACTICAL APPLICATIONS: Sprouting initiates proteolysis of vegetable proteins for the release of bioactive peptides. Abiotic stresses can be used as elicitors during the sprouting process to achieve enhanced phytochemical profiles of sprouts. Sprouting is a relatively more convenient approach to the improvement of the health benefits of vegetable foods. Vegetable sprouts are potential for the management of metabolic syndrome disorders.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Ishrat Majid
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - Shafat Hussain
- Department of Fisheries, Government of Jammu and Kashmir, Anantnag, India
| |
Collapse
|
8
|
Co-encapsulation of broccoli sprout extract nanoliposomes into basil seed gum: effects on in vitro antioxidant, antibacterial and anti-Listeria activities in ricotta cheese. Int J Food Microbiol 2022; 376:109761. [DOI: 10.1016/j.ijfoodmicro.2022.109761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
|
9
|
Pomace-Cassava as Antioxidant Bio-Based Coating Polymers for Cheeses. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fruit and vegetable-based materials, rich in phenolic pigments, and especially anthocyanins, have attracted attention as promising sources for bio-based antioxidant coating polymers, being a non-toxic, natural, ecofriendly, and green label solution to lower oxidation degradation in oil-water emulsion food, such as cheeses. However, could their pomaces also be used in such materials? This work has investigated the use of jabuticaba peels and red cabbage stir pomace extracts as antioxidant additives for cheese coating polymers. The antioxidant capacity of the jabuticaba-red cabbage pomace cassava-based polymer was evaluated in vitro (total phenolic, total anthocyanin content and DPPH scavenging %) and in vivo (by coating Minas Frescal cheeses and monitoring their peroxide index increase during a 9-day shelf life, at 10 °C). An in vitro characterization has indicated a high antioxidant capacity for both pomace extracts, with a higher capacity observed for the jabuticaba peels. In vivo investigations indicated that the pomace-starch coatings have protected cheeses up to 8.5 times against oxidation when compared to the control, with a synergistic protector effect among pomaces. Physical–chemical characterizations (pH, acidity, total solids, ash, total protein, fat content and syneresis) have indicated no coating interference on the cheese’s development.
Collapse
|
10
|
Zayed A, Sheashea M, Kassem IAA, Farag MA. Red and white cabbages: An updated comparative review of bioactives, extraction methods, processing practices, and health benefits. Crit Rev Food Sci Nutr 2022; 63:7025-7042. [PMID: 35174750 DOI: 10.1080/10408398.2022.2040416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Red and white cabbages (Brassica oleracea var. capitata f. alba and rubra, respectively) are two of the most commercially valued vegetables in crucifers, well-recognized for their unique sensory and nutritive attributes in addition to a myriad of health-promoting benefits. The current review addressed the differential qualitative/quantitative phytochemical make-ups for the first time for better utilization as nutraceuticals and to identify potential uses based on the chemical makeup of both cultivars (cvs.). In addition, extraction methods are compared highlighting their advantages and/or limitations with regards to improving yield and stability of cabbage bioactives, especially glucosinolates. Besides, the review recapitulated detailed action mechanism and safety of cabbage bioactives, as well as processing technologies to further improve their effects are posed as future perspectives. White and red cabbage cvs. revealed different GLSs profile which affected by food processing, including enzymatic hydrolysis, thermal breakdown, and leaching. In addition, the red cultivar provides high quality pigment for industrial applications. Moreover, non-conventional modern extraction techniques showed promising techniques for the recovery of their bioactive constituents compared to solvent extraction. All these findings pose white and red cabbages as potential candidates for inclusion in nutraceuticals and/or to be commercialized as functional foods prepared in different culinary forms.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed Sheashea
- Aromatic and Medicinal Plants Department, Desert Research Center, Cairo, Egypt
| | - Iman A A Kassem
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|