1
|
Jaszczur MM, Pham P, Ojha D, Pham CQ, McDonald JP, Woodgate R, Goodman MF. Pathogen-encoded Rum DNA polymerase drives rapid bacterial drug resistance. Nucleic Acids Res 2024:gkae899. [PMID: 39413207 DOI: 10.1093/nar/gkae899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The acquisition of multidrug resistance by pathogenic bacteria is a potentially incipient pandemic. Horizontal transfer of DNA from mobile integrative conjugative elements (ICEs) provides an important way to introduce genes that confer antibiotic (Ab)-resistance in recipient cells. Sizable numbers of SXT/R391 ICEs encode a hypermutagenic Rum DNA polymerase (Rum pol), which has significant homology with Escherichia coli pol V. Here, we show that even under tight transcriptional and post-transcriptional regulation imposed by host bacteria and the R391 ICE itself, Rum pol rapidly accelerates development of multidrug resistance (CIPR, RifR, AmpR) in E. coli in response to SOS-inducing Ab and non-Ab external stressors bleomycin (BLM), ciprofloxacin (CIP) and UV radiation. The impact of Rum pol on the rate of acquisition of drug resistance appears to surpass potential contributions from other cellular processes. We have shown that RecA protein plays a central role in controlling the ability of Rum pol to accelerate antibiotic resistance. A single amino acid substitution in RecA, M197D, acts as a 'Master Regulator' that effectively eliminates the Rum pol-induced Ab resistance. We suggest that Rum pol should be considered as one of the major factors driving development of de novo Ab resistance in pathogens carrying SXT/R391 ICEs.
Collapse
Affiliation(s)
- Malgorzata M Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Debika Ojha
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Cecilia Q Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Qin J, Guo H, Wu X, Ma S, Zhang X, Yang X, Liu B, Feng L, Liu H, Huang D. Characterization of Mild Acid Stress Response in an Engineered Acid-Tolerant Escherichia coli Strain. Microorganisms 2024; 12:1565. [PMID: 39203406 PMCID: PMC11356199 DOI: 10.3390/microorganisms12081565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Engineering acid-tolerant microbial strains is a cost-effective approach to overcoming acid stress during industrial fermentation. We previously constructed an acid-tolerant strain (Escherichia coli SC3124) with enhanced growth robustness and productivity under mildly acidic conditions by fine-tuning the expression of synthetic acid-tolerance module genes consisting of a proton-consuming acid resistance system (gadE), a periplasmic chaperone (hdeB), and ROS scavengers (sodB, katE). However, the precise acid-tolerance mechanism of E. coli SC3124 remained unclear. In this study, the growth of E. coli SC3124 under mild acid stress (pH 6.0) was determined. The final OD600 of E. coli SC3124 at pH 6.0 was 131% and 124% of that of the parent E. coli MG1655 at pH 6.8 and pH 6.0, respectively. Transcriptome analysis revealed the significant upregulation of the genes involved in oxidative phosphorylation, the tricarboxylic acid (TCA) cycle, and lysine-dependent acid-resistance system in E. coli SC3124 at pH 6.0. Subsequently, a weighted gene coexpression network analysis was performed to systematically determine the metabolic perturbations of E. coli SC3124 with mild acid treatment, and we extracted the gene modules highly associated with different acid traits. The results showed two biologically significant coexpression modules, and 263 hub genes were identified. Specifically, the genes involved in ATP-binding cassette (ABC) transporters, oxidative phosphorylation, the TCA cycle, amino acid metabolism, and purine metabolism were highly positively associated with mild acid stress responses. We propose that the overexpression of synthetic acid-tolerance genes leads to metabolic changes that confer mild acid stress resistance in E. coli. Integrated omics platforms provide valuable information for understanding the regulatory mechanisms of mild acid tolerance in E. coli and highlight the important roles of oxidative phosphorylation and ABC transporters in mild acid stress regulation. These findings offer novel insights to better the design of acid-tolerant chasses to synthesize value-added chemicals in a green and sustainable manner.
Collapse
Affiliation(s)
- Jingliang Qin
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China; (J.Q.); (B.L.)
| | - Han Guo
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China; (J.Q.); (B.L.)
| | - Xiaoxue Wu
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China; (J.Q.); (B.L.)
| | - Shuai Ma
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China; (J.Q.); (B.L.)
| | - Xin Zhang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China; (X.Z.); (X.Y.)
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China; (X.Z.); (X.Y.)
| | - Bin Liu
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China; (J.Q.); (B.L.)
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518000, China
| | - Lu Feng
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China; (J.Q.); (B.L.)
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Di Huang
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China; (J.Q.); (B.L.)
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518000, China
| |
Collapse
|
3
|
Möller AM, Vázquez-Hernández M, Kutscher B, Brysch R, Brückner S, Marino EC, Kleetz J, Senges CHR, Schäkermann S, Bandow JE, Narberhaus F. Common and varied molecular responses of Escherichia coli to five different inhibitors of the lipopolysaccharide biosynthetic enzyme LpxC. J Biol Chem 2024; 300:107143. [PMID: 38458396 PMCID: PMC10998244 DOI: 10.1016/j.jbc.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Anna-Maria Möller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Blanka Kutscher
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Raffael Brysch
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Simon Brückner
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Emily C Marino
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia Kleetz
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christoph H R Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
4
|
Garza Elizondo AM, Chappell J. Targeted Transcriptional Activation Using a CRISPR-Associated Transposon System. ACS Synth Biol 2024; 13:328-336. [PMID: 38085703 DOI: 10.1021/acssynbio.3c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Synthetic perturbation of gene expression is central to our ability to reliably uncover genotype-phenotype relationships in microbes. Here, we present a novel transcription activation strategy that uses the Vibrio cholerae CRISPR-Associated Transposon (CAST) system to selectively insert promoter elements upstream of genes of interest. Through this strategy, we show robust activation of both recombinant and endogenous genes across the Escherichia coli chromosome. We then demonstrate the precise tuning of expression levels by exchanging the promoter elements being inserted. Finally, we demonstrate that CAST activation can be used to synthetically induce ampicillin-resistant phenotypes in E. coli.
Collapse
Affiliation(s)
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Kruszewska-Naczk B, Grinholc M, Waleron K, Bandow JE, Rapacka-Zdończyk A. Can antimicrobial blue light contribute to resistance development? Genome-wide analysis revealed aBL-protective genes in Escherichia coli. Microbiol Spectr 2024; 12:e0249023. [PMID: 38063383 PMCID: PMC10782963 DOI: 10.1128/spectrum.02490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/24/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Increasing antibiotic resistance and the lack of new antibiotic-like compounds to combat bacterial resistance are significant problems of modern medicine. The development of new alternative therapeutic strategies is extremely important. Antimicrobial blue light (aBL) is an innovative approach to combat multidrug-resistant microorganisms. aBL has a multitarget mode of action; however, the full mechanism of aBL antibacterial action requires further investigation. In addition, the potential risk of resistance development to this treatment should be considered.
Collapse
Affiliation(s)
- Beata Kruszewska-Naczk
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße, Bochum, Germany
| | - Aleksandra Rapacka-Zdończyk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
6
|
Camus A, Espinosa E, Zapater Baras P, Singh P, Quenech’Du N, Vickridge E, Modesti M, Barre FX, Espéli O. The SMC-like RecN protein is at the crossroads of several genotoxic stress responses in Escherichia coli. Front Microbiol 2023; 14:1146496. [PMID: 37168111 PMCID: PMC10165496 DOI: 10.3389/fmicb.2023.1146496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways. Methods In the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in E. coli. We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections. Results We demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions. Discussion Those results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR.
Collapse
Affiliation(s)
- Adrien Camus
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
| | - Elena Espinosa
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | | | - Parul Singh
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
| | - Nicole Quenech’Du
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
| | - Elise Vickridge
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR 7258, INSERM U1068, Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - François Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Olivier Espéli
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
- *Correspondence: Olivier Espéli,
| |
Collapse
|
7
|
Gene Networks and Pathways Involved in Escherichia coli Response to Multiple Stressors. Microorganisms 2022; 10:microorganisms10091793. [PMID: 36144394 PMCID: PMC9501238 DOI: 10.3390/microorganisms10091793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Stress response helps microorganisms survive extreme environmental conditions and host immunity, making them more virulent or drug resistant. Although both reductionist approaches investigating specific genes and systems approaches analyzing individual stress conditions are being used, less is known about gene networks involved in multiple stress responses. Here, using a systems biology approach, we mined hundreds of transcriptomic data sets for key genes and pathways involved in the tolerance of the model microorganism Escherichia coli to multiple stressors. Specifically, we investigated the E. coli K-12 MG1655 transcriptome under five stresses: heat, cold, oxidative stress, nitrosative stress, and antibiotic treatment. Overlaps of transcriptional changes between studies of each stress factor and between different stressors were determined: energy-requiring metabolic pathways, transport, and motility are typically downregulated to conserve energy, while genes related to survival, bona fide stress response, biofilm formation, and DNA repair are mainly upregulated. The transcription of 15 genes with uncharacterized functions is higher in response to multiple stressors, which suggests they may play pivotal roles in stress response. In conclusion, using rank normalization of transcriptomic data, we identified a set of E. coli stress response genes and pathways, which could be potential targets to overcome antibiotic tolerance or multidrug resistance.
Collapse
|
8
|
Yao X, Liu P, Chen B, Wang X, Tao F, Lin Z, Yang X. Synthetic acid stress-tolerance modules improve growth robustness and lysine productivity of industrial Escherichia coli in fermentation at low pH. Microb Cell Fact 2022; 21:68. [PMID: 35459210 PMCID: PMC9026648 DOI: 10.1186/s12934-022-01795-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background During fermentation, industrial microorganisms encounter multiple stresses that inhibit cell growth and decrease fermentation yields, in particular acid stress, which is due to the accumulation of acidic metabolites in the fermentation medium. Although the addition of a base to the medium can counteract the effect of acid accumulation, the engineering of acid-tolerant strains is considered a more intelligent and cost-effective solution. While synthetic biology theoretically provides a novel approach for devising such tolerance modules, in practice it is difficult to assemble stress-tolerance modules from hundreds of stress-related genes. Results In this study, we designed a set of synthetic acid-tolerance modules for fine-tuning the expression of multi-component gene blocks comprising a member of the proton-consuming acid resistance system (gadE), a periplasmic chaperone (hdeB), and reactive oxygen species (ROS) scavengers (sodB and katE). Directed evolution was used to construct an acid-responsive asr promoter library, from which four variants were selected and used in the synthetic modules. The module variants were screened in a stepwise manner under mild acidic conditions (pH 5–6), first by cell growth using the laboratory Escherichia coli strain MG1655 cultured in microplates, and then by lysine production performance using the industrial lysine-producing E. coli strain MG1655 SCEcL3 cultured first in multiple 10-mL micro-bioreactors, and then in 1.3-L parallel bioreactors. The procedure resulted in the identification of a best strain with lysine titer and yield at pH 6.0 comparable to the parent strain at pH 6.8. Conclusion Our results demonstrate a promising synthetic-biology strategy to enhance the growth robustness and productivity of E. coli upon the mildly acidic conditions, in both a general lab strain MG1655 and an industrial lysine-producing strain SCEcL3, by using the stress-responsive synthetic acid-tolerance modules comprising a limited number of genes. This study provides a reliable and efficient method for achieving synthetic modules of interest, particularly in improving the robustness and productivity of industrial strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01795-4.
Collapse
Affiliation(s)
- Xurong Yao
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Peng Liu
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Bo Chen
- COFCO Nutrition & Health Research Institute, Beijing, 102209, China
| | - Xiaoyan Wang
- COFCO Nutrition & Health Research Institute, Beijing, 102209, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
9
|
A Fluorescent Probe to Detect Quick Disulfide Reductase Activity in Bacteria. Antioxidants (Basel) 2022; 11:antiox11020377. [PMID: 35204259 PMCID: PMC8868778 DOI: 10.3390/antiox11020377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
The Trx and Grx systems, two disulfide reductase systems, play critical roles in various cell activities. There are great differences between the thiol redox systems in prokaryotes and mammals. Though fluorescent probes have been widely used to detect these systems in mammalian cells. Very few methods are available to detect rapid changes in the redox systems of prokaryotes. Here we investigated whether Fast-TRFS, a disulfide-containing fluorescent probe utilized in analysis of mammalian thioredoxin reductase, could be used to detect cellular disulfide reducibility in bacteria. Fast-TRFS exhibited good substrate qualities for both bacterial thioredoxin and GSH-glutaredoxin systems in vitro, with Trx system having higher reaction rate. Moreover, the Fast-TRFS was used to detect the disulfide reductase activity in various bacteria and redox-related gene null E. coli. Some glutaredoxin-deficient bacteria had stronger fast disulfide reducibility. The Trx system was shown to be the predominant disulfide reductase for fast disulfide reduction rather than the Grx system. These results demonstrated that Fast-TRFS is a viable probe to detect thiol-dependent disulfide reductases in bacteria. It also indicated that cellular disulfide reduction could be classified into fast and slow reaction, which are predominantly catalyzed by E. coli Trx and Grx system, respectively.
Collapse
|
10
|
Xiao X, Bai L, Wang S, Liu L, Qu X, Zhang J, Xiao Y, Tang B, Li Y, Yang H, Wang W. Chlorine Tolerance and Cross-Resistance to Antibiotics in Poultry-Associated Salmonella Isolates in China. Front Microbiol 2022; 12:833743. [PMID: 35185838 PMCID: PMC8854976 DOI: 10.3389/fmicb.2021.833743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/28/2021] [Indexed: 01/10/2023] Open
Abstract
Chlorine disinfectants have been widely used in the poultry supply chain but this exposure can also result in the development of bacterial tolerance to chlorine and this is often linked to antibiotic cross-resistance. The objectives of this study were to investigate sodium hypochlorite (NaClO) tolerance of Salmonella isolated from poultry supply chains and evaluate cross-resistance. We collected 172 Salmonella isolates from poultry farms, slaughter houses and retail markets in China during 2019–2020. We found that S. Enteritidis, S. Kentucky, and S. Typhimurium constituted > 80% of our Salmonella isolates. Overall, 68% of Salmonella isolates were resistant to > 3 antibiotics and S. Kentucky displayed a significantly (p > 0.05) higher frequency (93.2%) of multidrug resistance than the other serovars. Tolerance to chlorine at MIC > 256 mg/L was detected in 93.6% of isolates (161/172) and tolerant isolates displayed higher decimal reduction times (D value) and less ultrastructural damage than did the suspectable strains under chlorine stress. Spearman analysis indicated significant positive correlations between chlorine tolerance (evaluated by the OD method) and antibiotic resistance (p < 0.05) to ceftiofur, tetracycline, ciprofloxacin and florfenicol and this was most likely due to efflux pump over-expression. The most frequently detected chlorine resistance gene was qacEΔ1 (83.1%, n = 143) and we found a positive correlation between its presence and MIC levels (r = 0.66, p < 0.0001). Besides, we found weak correlations between chlorine-tolerance and antibiotic resistance genes. Our study indicated that chlorine disinfectants most likely played an important role in the emergence of chlorine tolerance and spread of antibiotic resistance and therefore does not completely control the risk of food-borne disease. The issue of disinfectant resistance should be examined in more detail at the level of the poultry production chain.
Collapse
Affiliation(s)
- Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture (MOA) Laboratory of Quality and Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Sheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture (MOA) Laboratory of Quality and Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lisha Liu
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaoyun Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianmin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture (MOA) Laboratory of Quality and Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture (MOA) Laboratory of Quality and Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture (MOA) Laboratory of Quality and Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Hua Yang,
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture (MOA) Laboratory of Quality and Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Wen Wang,
| |
Collapse
|