1
|
Gyurova A, Milkova V, Iliev I, Lazarova-Zdravkova N, Rashev V, Simeonova L, Vilhelmova-Ilieva N. Anti-Coronavirus Activity of Chitosan-Stabilized Liposomal Nanocarriers Loaded with Natural Extracts from Bulgarian Flora. Life (Basel) 2024; 14:1180. [PMID: 39337963 DOI: 10.3390/life14091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Disease's severity, mortality rates, and common failures to achieve clinical improvement during the unprecedented COVID-19 pandemic exposed the emergency need for new antiviral therapeutics with higher efficacy and fewer adverse effects. This study explores the potential to encapsulate multi-component plant extracts in liposomes as optimized delivery systems and to verify if they exert inhibitory effects against human seasonal betacoronavirus OC43 (HCoV-OC43) in vitro. The selection of Sambucus nigra, Potentilla reptans, Allium sativum, Aesculus hippocastanum, and Glycyrrhiza glabra L. plant extracts was based on their established pharmacological and antiviral properties. The physicochemical characterization of extract-loaded liposomes was conducted by DLS and electrokinetics. Encapsulated amounts of the extract were evaluated based on the total flavonoid content (TFC) and total polyphenol content (TPC) by colorimetric methods. The BALB 3T3 neutral red uptake (NRU) phototoxicity/cytotoxicity assay was used to estimate compounds' safety. Photo irritation factors (PIFs) of the liposomes containing extracts were <2 which assigned them as non-phototoxic substances. The antiviral capacities of liposomes containing medicinal plant extracts against HCoV-OC43 were measured by the cytopathic effect inhibition test in susceptible HCT-8 cells. The antiviral activity increased by several times compared to "naked" extracts' activity reported previously. A. hippocastanum extract showed 16 times higher inhibitory properties reaching a selectivity index (SI) of 58.96. Virucidal and virus-adsorption effects were investigated using the endpoint dilution method and ∆lgs comparison with infected and untreated controls. The results confirmed that nanoparticles do not directly affect the viral surface or cell membrane, but only serve as carriers of the active substances and the observed protection is due solely to the intracellular action of the extracts.
Collapse
Affiliation(s)
- Anna Gyurova
- Institute of Physical Chemistry 'Acad. R. Kaischew', Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Viktoria Milkova
- Institute of Physical Chemistry 'Acad. R. Kaischew', Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski, 1756 Sofia, Bulgaria
| | - Nevena Lazarova-Zdravkova
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski, 1756 Sofia, Bulgaria
| | - Viktor Rashev
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria
| | - Lora Simeonova
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria
| | - Neli Vilhelmova-Ilieva
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Ju S, Tan Y, Wang Q, Zhou L, Wang K, Wen C, Wang M. Antioxidant and anti‑inflammatory effects of esculin and esculetin (Review). Exp Ther Med 2024; 27:248. [PMID: 38682114 PMCID: PMC11046185 DOI: 10.3892/etm.2024.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Fraxinus chinensis Roxb is a deciduous tree, which is distributed worldwide and has important medicinal value. In Asia, the bark of Fraxinus chinensis Roxb is a commonly used traditional Chinese medicine called Qinpi. Esculetin is a coumarin compound derived from the bark of Fraxinus chinensis Roxb and its glycoside form is called esculin. The aim of the present study was to systematically review relevant literature on the antioxidant and anti-inflammatory effects of esculetin and esculin. Esculetin and esculin can promote the expression of various endogenous antioxidant proteins, such as superoxide dismutase, glutathione peroxidase and glutathione reductase. This is associated with the activation of the nuclear factor erythroid-derived factor 2-related factor 2 signaling pathway. The anti-inflammatory effects of esculetin and esculin are associated with the inhibition of the nuclear factor κ-B and mitogen-activated protein kinase inflammatory signaling pathways. In various inflammatory models, esculetin and esculin can reduce the expression levels of various proinflammatory factors such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6, thereby inhibiting the development of inflammation. In summary, esculetin and esculin may be promising candidates for the treatment of numerous diseases associated with inflammation and oxidative stress, such as ulcerative colitis, acute lung and kidney injury, lung cancer, acute kidney injury.
Collapse
Affiliation(s)
- Shaohua Ju
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Youli Tan
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Ling Zhou
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Kun Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Chenghong Wen
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Mingjian Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
3
|
Villamor G, Winograd D, Baum JD. Painful bruising: Gynecology, hematology, or just pill bias? A case report. Case Rep Womens Health 2023; 39:e00538. [PMID: 37719129 PMCID: PMC10502329 DOI: 10.1016/j.crwh.2023.e00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
A 23-year-old woman, G0, presented to the emergency department with painful bruising of the legs shortly after starting an oral contraceptive pill. The presumed diagnosis was pill-induced ecchymosis, and she was instructed to discontinue the medication. Her bruising resolved. However, the working diagnosis was later questioned as the patient had used other oral contraceptive pills in the past without any adverse reaction. In addition, there is robust literature associating these medications with thrombosis, not bruising. The patient later disclosed that she had concomitantly started an oral hair supplement along with her oral contraceptive pill. Analysis of the supplement contents revealed that it contained extract of Aesculus hippocastanum, a herbal anticoagulant, making this a much more plausible explanation for the ecchymosis. She then resumed the original oral contraceptive pill alone without any reaction. The case highlights how cognitive bias resulted in a misdiagnosis. Specifically, this case introduces the concept of pill bias, as the patient's unexplained bruising was presumed to be a result of her use of an oral contraceptive despite the lack of evidence to support this claim. This bias has the potential to impact clinical decision-making and lead to clinical errors.
Collapse
Affiliation(s)
- Gabriela Villamor
- Jersey Shore University Medical Center Department of Obstetrics and Gynecology, Neptune, NJ, United States
| | - Deborah Winograd
- Jersey Shore University Medical Center Department of Obstetrics and Gynecology, Neptune, NJ, United States
| | - Jonathan D. Baum
- Jersey Shore University Medical Center Department of Obstetrics and Gynecology, Neptune, NJ, United States
| |
Collapse
|
4
|
Golubkina N, Plotnikova U, Lapchenko V, Lapchenko H, Sheshnitsan S, Amagova Z, Matsadze V, Naumenko T, Bagrikova N, Logvinenko L, Sakhno T, Shevchuk O, Pirogov N, Caruso G. Evaluation of Factors Affecting Tree and Shrub Bark's Antioxidant Status. PLANTS (BASEL, SWITZERLAND) 2022; 11:2609. [PMID: 36235475 PMCID: PMC9571727 DOI: 10.3390/plants11192609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The importance of using the barks of trees and shrubs as powerful natural antioxidants suggests the necessity to evaluate the effect of different environmental factors on bark extracts’ quality. The determination of total antioxidant activity (AOA) and polyphenol content (TP) in the bark of 58 tree and shrub species from 7 regions differing in mean annual temperature, insolation, humidity, salinity level, and altitude was performed. The above stress factors positively affected bark AOA but did not have a statistically significant effect on TP. The bark of trees grown in the seashore proximity was characterized by significantly higher AOA than samples gathered in other areas, similarly to the trees grown at high altitude. The bark antioxidant status of 18 species was described for the first time. New sources of powerful antioxidants were represented by the ornamental shrubs Cornus sanguinea and Cornus alba, which showed the highest AOA (169−171 mg GAE g−1 d.w.). Among the typical halophytes, Calligonum and Tamarix had high AOA (172 and 85 mg GAE g−1 d.w.), while in the bark of tamarisk, an Se accumulator, an Se concentration of about 900 µg kg−1 d.w. was recorded. A significant positive correlation was found between leaves and bark AOA in the Karadag Nature Reserve’s deciduous trees (r = 0.898, p < 0.01). The relationship between bark AOA and TP was highly significant (r = 0.809; p < 0.001) for all samples except the mountainous ones. The results of the present research revealed new opportunities in successive bark utilization.
Collapse
Affiliation(s)
- Nadezhda Golubkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Ulyana Plotnikova
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Vladimir Lapchenko
- T.I. Vyazemsky Karadag Scientific Station, Nature Reserve of RAS, 298188 Feodosia, Russia
| | - Helene Lapchenko
- T.I. Vyazemsky Karadag Scientific Station, Nature Reserve of RAS, 298188 Feodosia, Russia
| | - Sergey Sheshnitsan
- Department of Landscape Architecture and Soil Science, Voronezh State University of Forestry and Technologies, 394036 Voronezh, Russia
| | - Zarema Amagova
- Chechen Scientific Institute of Agriculture, 366021 Gikalo, Grozny Region, Russia
| | - Visita Matsadze
- Chechen Scientific Institute of Agriculture, 366021 Gikalo, Grozny Region, Russia
| | - Tatiana Naumenko
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Natalia Bagrikova
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Lidia Logvinenko
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Tatiana Sakhno
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Oksana Shevchuk
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Nikolay Pirogov
- Bogdinsko-Baskunchak Nature Reserve, 416532 Akhtubinsk, Russia
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
5
|
Vilhelmova-Ilieva N, Petrova Z, Georgieva A, Tzvetanova E, Trepechova M, Mileva M. Anti-Coronavirus Efficiency and Redox-Modulating Capacity of Polyphenol-Rich Extracts from Traditional Bulgarian Medicinal Plants. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071088. [PMID: 35888176 PMCID: PMC9319587 DOI: 10.3390/life12071088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 01/01/2023]
Abstract
Background: The use of various herbal therapists as part of traditional medicine in different parts of the world, including Bulgaria, is due to the knowledge accumulated over the centuries by people about their valuable biological activities. In this study, we investigate extracts from widely used Bulgarian medicinal plants for their ability to prevent the coronavirus infection of cells by testing different mechanisms of antiviral protection, their polyphenol content, and redox-modulating capacity. Methods: The influence on the stage of viral adsorption, the inhibition of extracellular virions, and the protective effect on uninfected cells of the plant’s extracts were reported by the end-point dilution method, and virus titer (in Δ lgs) was determined as compared to the untreated controls. The total content of polyphenols and flavonoids was also determined. We tested the antioxidant power of the extracts by their ability to inhibit the generation of superoxide anionic radicals and to scavenge DPPH radicals. We determined their iron-reducing, copper-reducing, and metal-chelating antioxidant powers. Results: Most of the extracts tested suppress the extracellular virions of HCov. They also inhibit the stage of viral adsorption to the host cell to varying degrees and have a protective effect on healthy cells before being subjected to viral invasion. The examined extracts contained significant levels of polyphenols and quercetin-like flavonoids and showed remarkable antioxidant, radical, and redox-modulating effects. Conclusions: All of these 13 extracts from Bulgarian medicinal plants tested can act as antioxidants and antiviral and symptomatic drugs for the management of coronavirus infection.
Collapse
Affiliation(s)
- Neli Vilhelmova-Ilieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria; (N.V.-I.); (Z.P.); (A.G.); (E.T.); (M.T.)
| | - Zdravka Petrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria; (N.V.-I.); (Z.P.); (A.G.); (E.T.); (M.T.)
- Institute of Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 25 Georgi Bonchev, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria; (N.V.-I.); (Z.P.); (A.G.); (E.T.); (M.T.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bontchev St., 1113 Sofia, Bulgaria
| | - Elina Tzvetanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria; (N.V.-I.); (Z.P.); (A.G.); (E.T.); (M.T.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bontchev St., 1113 Sofia, Bulgaria
| | - Madlena Trepechova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria; (N.V.-I.); (Z.P.); (A.G.); (E.T.); (M.T.)
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria; (N.V.-I.); (Z.P.); (A.G.); (E.T.); (M.T.)
- Correspondence: ; Tel.: +359-899-151-169
| |
Collapse
|
6
|
Bulgarian Medicinal Extracts as Natural Inhibitors with Antiviral and Antibacterial Activity. PLANTS 2022; 11:plants11131666. [PMID: 35807618 PMCID: PMC9268788 DOI: 10.3390/plants11131666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Background: Bulgaria is a country with a wide range of medicinal plants, with uses in traditional medicine dating back for centuries. Methods: Disc diffusion assay was used to evaluate the antimicrobial activity of the plant extracts. A cytopathic effect inhibition test was used for the assessment of the antiviral activity of the extracts. The virucidal activity of the extracts, their influence on the stage of viral adsorption, and their protective effect on uninfected cells were reported using the end-point dilution method, and Δlgs was determined as compared to the untreated controls. Results: The results of the study reveal that the antibacterial potential of G. glabra and H. perforatum extracts in Gram-positive bacteria is more effective than in Gram-negative bacteria. When applied during the replication of HSV-1 and HCov-OC-43, only some of the extracts showed weak activity, with SI between 2 to 8.5. Almost all tested extracts inhibited the extracellular virions of the studied enveloped viruses (HSV-1 and HCov-OC-43) to a greater extent than of the non-enveloped viruses (PV-1 and HAdV-5). They inhibited the stage of viral adsorption (HSV-1) in the host cell (MDBK) to varying degrees and showed a protective effect on healthy cells (MDBK) before they were subjected to viral invasion (HSV-1). Conclusion: The antipathogenic potential of extracts of H. perforatum and G. glabra suggests their effectiveness as antimicrobial agents. All 13 extracts of the Bulgarian medicinal plants studied can be used to reduce viral yield in a wide range of viral infections.
Collapse
|
7
|
Li C, Li J, Lai J, Liu Y. The pharmacological and pharmacokinetic properties of esculin: A comprehensive review. Phytother Res 2022; 36:2434-2448. [PMID: 35599456 DOI: 10.1002/ptr.7470] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Chun‐xiao Li
- Department of Dermatology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jing‐chun Li
- Department of Dermatology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jiang Lai
- Department of Anorectal Surgery Third People's Hospital of Chengdu Chengdu China
| | - Ying Liu
- Department of Dermatology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
8
|
Red Horse Chestnut and Horse Chestnut Flowers and Leaves: A Potential and Powerful Source of Polyphenols with High Antioxidant Capacity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072279. [PMID: 35408675 PMCID: PMC9000377 DOI: 10.3390/molecules27072279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Aesculus flowers and leaves are an excellent source of bioactive compounds, including flavanols, phenolic acids, and anthocyanins, and the leaves also contain antioxidant carotenoids and chlorophylls. The aim of this study was to analyse and compare the amounts of bioactive compounds present in Aesculus hippocastanum and Aesculus × carnea flowers and leaves over two years. These two species from six independent locations (parks and green areas) located in Warsaw were assessed in this study. The dry matter by the scale method and polyphenol, carotenoid, and chlorophyll content by the HPLC method of the flowers and leaves was evaluated. Red horse chestnut flowers contained significantly more total carotenoids (40.6 µg/g FW) and chlorophylls (36.9 µg/g FW) than horse chestnut flowers, and red horse chestnut flowers contained higher levels of anthocyanins (5.41 µg/g FW) than other species. We observed that horse chestnut flowers were characterized by a higher total polyphenols concentration (9.45 µg/g FW) compared to red horse chestnut flowers. In addition, the analysis of leaves showed that all quality parameters were higher in red horse chestnut species. Five individual anthocyanins were identified in both species’ flowers, but a higher concentration was found in red horse chestnut flowers, and pelargonidin-3-O-glucoside was the predominant form among a pool of total anthocyanins. In both experimental years, leaves (109.25 mMol/100 g FW and 112.0 mMol/100 g FW) were characterized by a higher antioxidant activity than flowers (27.0 mMol/100 g FW and 27.5 mMol/100 g FW).
Collapse
|
9
|
Luo Y, Jian Y, Liu Y, Jiang S, Muhammad D, Wang W. Flavanols from Nature: A Phytochemistry and Biological Activity Review. Molecules 2022; 27:719. [PMID: 35163984 PMCID: PMC8838462 DOI: 10.3390/molecules27030719] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Flavanols, a common class of secondary plant metabolites, exhibit several beneficial health properties by acting as antioxidant, anticarcinogen, cardioprotective, anti-microbial, anti-viral, and neuroprotective agents. Furthermore, some flavanols are considered functional ingredients in dairy products. Based on their structural features and health-promoting functions, flavanols have gained the attention of pharmacologists and botanists worldwide. This review collects and summarizes 121 flavanols comprising four categories: flavan-3-ols, flavan-4-ols, isoflavan-4-ols, and flavan-3,4-ols. The research of the various structural features and pharmacological activities of flavanols and their derivatives aims to lay the groundwork for subsequent research and expect to provide mentality and inspiration for the research. The current study provides a starting point for further research and development.
Collapse
Affiliation(s)
| | - Yuqing Jian
- Correspondence: (Y.J.); (W.W.); Tel.: +86-150-8486-8970 (Y.J.); +86-136-5743-8606 (W.W.)
| | | | | | | | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.L.); (Y.L.); (S.J.); (D.M.)
| |
Collapse
|
10
|
Owczarek A, Kołodziejczyk-Czepas J, Marczuk P, Siwek J, Wąsowicz K, Olszewska MA. Bioactivity Potential of Aesculus hippocastanum L. Flower: Phytochemical Profile, Antiradical Capacity and Protective Effects on Human Plasma Components under Oxidative/Nitrative Stress In Vitro. Pharmaceuticals (Basel) 2021; 14:ph14121301. [PMID: 34959702 PMCID: PMC8706066 DOI: 10.3390/ph14121301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Horse chestnut (Aesculus hippocastanum) flower is a traditional medicine applied to alleviate symptoms of chronic venous insufficiency (CVI). However, its flavonoid-based composition has not been sufficiently recognized, and the data supporting its traditional application are lacking. In the work, 43 constituents were detected by UHPLC-PDA-ESI-TQ-MS/MS (flavonoids, phenolic acids, flavanols, and coumarins), including 31 reported in the flower for the first time. The quantitative HPLC-PDA study (developed and validated for quality control purposes) indicated the fractionated extraction as an efficient method for enhancing the total polyphenol content (TPHC) in the extracts (up to 414.06 mg/g) and kaempferol glycosides as their dominant constituents (75.05-82.14% TPHC). The activity studies showed significant scavenging properties of the extracts and their constituents towards reactive oxygen species (especially against highly reactive hydroxyl radical, with capacities up to 7.85 mmol ascorbic acid equivalents/g). Moreover, the analytes relevantly protected human plasma biomolecules from peroxynitrite-induced oxidative/nitrative damage; at 1-50 µg/mL, they hindered the protein nitration and lipid peroxidation, decreasing the levels of 3-nitrotyrosine (by up to 50%) and thiobarbituric acid reactive substances (by up to 70%), respectively. The extracts also averted the depletion of plasma thiols (by up to 67%) and improved the non-enzymatic antioxidant capacity of plasma. The demonstrated mechanisms might be partly responsible for the efficacy of the flower in CVI. Additionally, the anti-aggregatory and anticoagulant properties of the extracts were found only mild or negligible, which suggests that they may be safely applied with drugs impacting the coagulation process.
Collapse
Affiliation(s)
- Aleksandra Owczarek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (J.S.); (K.W.); (M.A.O.)
- Correspondence:
| | - Joanna Kołodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (J.K.-C.); (P.M.)
| | - Paulina Marczuk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (J.K.-C.); (P.M.)
| | - Julia Siwek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (J.S.); (K.W.); (M.A.O.)
| | - Katarzyna Wąsowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (J.S.); (K.W.); (M.A.O.)
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (J.S.); (K.W.); (M.A.O.)
| |
Collapse
|
11
|
Green A, Padilla-Gonzalez GF, Phumthum M, Simmonds MSJ, Sadgrove NJ. Comparative Metabolomics of Reproductive Organs in the Genus Aesculus (Sapindaceae) Reveals That Immature Fruits Are a Key Organ of Procyanidin Accumulation and Bioactivity. PLANTS (BASEL, SWITZERLAND) 2021; 10:2695. [PMID: 34961166 PMCID: PMC8708636 DOI: 10.3390/plants10122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
Fruit from A. hippocastanum L. are used commercially for chronic venous insufficiency (CVI). The isomeric mixture of pentacyclic triterpenoid saponins (β-aescin) exert anti-inflammatory effects. Hence, research has focused on β-aescin, yet the diversity, accumulation, and bioactivity of organ-specific secondary metabolites represent missed pharmacological opportunities. To this end, we applied an untargeted metabolomics approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to the chemical profiles of flowers, immature fruits, and pedicels from 40 specimens across 18 species of Aesculus. Principal component analysis (PCA), orthogonal partial least squares (OPLS-DA), and molecular networking revealed stronger chemical differences between plant organs, than between species. Flowers are rich in glycosylated flavonoids, pedicels in organic acids and flavonoid aglycones, and immature fruits in monomeric flavan-3-ols and procyanidins. Although a high diversity of flavonoids and procyanidins was observed, the relative amounts differed by plant organ. Fruit extracts demonstrated the strongest antifungal (Saccharomyces cerevisiae) and antioxidant activity, likely from the procyanidins. Overall, secondary metabolite profiles are organ-specific, and fruits accumulate antifungal and antioxidant compounds. Due to the chemical similarity between species, similar effects may be achieved between species. This creates incentives for further exploration of the entire genus, in bioprospecting for potential therapeutic leads.
Collapse
Affiliation(s)
- Alison Green
- Royal Botanic Gardens, Kew, Richmond Surrey, London TW9 3AD, UK; (A.G.); (G.F.P.-G.); (M.P.); (M.S.J.S.)
| | | | - Methee Phumthum
- Royal Botanic Gardens, Kew, Richmond Surrey, London TW9 3AD, UK; (A.G.); (G.F.P.-G.); (M.P.); (M.S.J.S.)
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 999 Phutthamonthon Sai 4 Rd, Salaya, Phutthamonthon District, Nakhon Pathom 73170, Thailand
| | - Monique S. J. Simmonds
- Royal Botanic Gardens, Kew, Richmond Surrey, London TW9 3AD, UK; (A.G.); (G.F.P.-G.); (M.P.); (M.S.J.S.)
| | - Nicholas J. Sadgrove
- Royal Botanic Gardens, Kew, Richmond Surrey, London TW9 3AD, UK; (A.G.); (G.F.P.-G.); (M.P.); (M.S.J.S.)
| |
Collapse
|