1
|
Tul Ain Z, Fatima I, Naseer S, Kanwal S, Mahmood T. Assessment of phytochemicals, antioxidant, anti-hemolytic, anti-inflammatory and anti-cancer potential of flowers, leaves and stem extracts of. J TRADIT CHIN MED 2024; 44:804-712. [PMID: 39066541 PMCID: PMC11393817 DOI: 10.19852/j.cnki.jtcm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To evaluate phytochemicals and in vitro biological potential of flowers, leaves and stem extracts of Rosa arvensis. METHODS Presence of twenty secondary metabolites was confirmed and then phenolic and flavonoid contents were quantified spectrophotometrically. Fourier Transform Infrared spectroscopy was conducted to ascertain functional groups and antioxidant potential was examined using 2,2-diphenyl-1-picrylhydrazyl scavenging activity, total antioxidant capacity and total reducing power assays. Human erythrocytes were used to assess anti-hemolytic activity and five bacterial strains were examined to determine antibacterial potential of plant extracts. Radish seeds were used to perform phytotoxic activity and cytotoxic potential was evaluated via brine shrimps and PC3 cell lines. RESULTS Highest phenolic contents were detected in the methanolic extract of Rosa arvensis flower (RAFM) [(151.635 ± 0.005) gallic acid equivalent mg/g] and highest flavonoid contents in the chloroform leaf extract (RALC) [(108.228 ± 0.004) quercetin equivalent mg/g]. Fourier-transform infrared spectroscopy analysis showed the presence of wide range of functional groups. The antioxidant assays indicated highest DPPH scavenging activity [IC50 (23.5 ± 0.6) μg/mL] in the methanolic stem extract (RASM), highest total antioxidant capacity [(265.1 ± 0.9) μg/mL] in RAFM and highest reducing potential [(209.9 ± 0.6) μg/mL] in leaf extract (RALM). Highest anti-hemolytic activity [(90.0 ± 0.5) μg/mL] was recorded in RAFM and brine shrimp cytotoxicity potential [(52.3 ± 0.3) μg/mL] in RASM. The antimicrobial activity was detected highest [(21.1 ± 0.5) mm inhibition zones] in RALM against Streptococcus aureus. In the end, anti-inflammatory and anti-cancer activity results depicted less than 50 % inhibition in the methanolic extracts. CONCLUSIONS: Our findings will be helpful in designing pharmaceutical regimens and therefore, more studies can be recommended to isolate and characterize compounds associated with the biological activities of Rosa arvensis.
Collapse
Affiliation(s)
- Zubaria Tul Ain
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Iram Fatima
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sana Naseer
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sobia Kanwal
- Department of Biology, Allama Iqbal Open University, Islamabad 04403, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- 4 Pakistan Academy of Sciences, Islamabad 04403, Pakistan
| |
Collapse
|
2
|
Angeli L, Morozova K, Dawid C, Scampicchio M, Stark TD. UPLC-ESI-TOF MS Profiling Discriminates Biomarkers in Authentic and Adulterated Italian Samples of Saffron ( Crocus sativus L.). ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:1783-1794. [PMID: 39050589 PMCID: PMC11265267 DOI: 10.1021/acsfoodscitech.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Italian saffron (Crocus sativus L.) is gaining visibility due to its high quality and difference in growing area. In this study, the metabolite composition and quality of Italian saffron samples purchased from local producers and supermarkets were investigated using an untargeted metabolomics approach using UPLC-ESI-TOF MS with simultaneous acquisition of low- and high-collision energy mass spectrometry (MSe). Unsupervised statistical method (PCA) highlighted significant differences in the metabolomes, even if not related to the geographical origin. OPLS-DA revealed 9(S)-,10-(S)-,13-(S)-tri-hydroxy-11-(E)-octadecenoic acid as the most decisive compound to distinguish supermarket saffron, while oxidized crocins represented the most valuable markers to further describe the quality of saffron, even in locally produced samples. Known adulterations with paprika and turmeric were detected at a limit of 10%, and the increasing signals of cyclocurcumin was a significant biomarker for turmeric contamination. The results were underlined with conventional and kinetic antioxidant assays.
Collapse
Affiliation(s)
- Lucrezia Angeli
- Faculty
for Agricultural, Environmental, and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Ksenia Morozova
- Faculty
for Agricultural, Environmental, and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Corinna Dawid
- Professorship
for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Food
Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Matteo Scampicchio
- Faculty
for Agricultural, Environmental, and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Timo D. Stark
- Food
Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
3
|
Asma U, Bertotti ML, Zamai S, Arnold M, Amorati R, Scampicchio M. A Kinetic Approach to Oxygen Radical Absorbance Capacity (ORAC): Restoring Order to the Antioxidant Activity of Hydroxycinnamic Acids and Fruit Juices. Antioxidants (Basel) 2024; 13:222. [PMID: 38397820 PMCID: PMC10886186 DOI: 10.3390/antiox13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
This study introduces a kinetic model that significantly improves the interpretation of the oxygen radical absorbance capacity (ORAC) assay. Our model accurately simulates and fits the bleaching kinetics of fluorescein in the presence of various antioxidants, achieving high correlation values (R2 > 0.99) with the experimental data. The fit to the experimental data is achieved by optimizing two rate constants, k5 and k6. The k5 value reflects the reactivity of antioxidants toward scavenging peroxyl radicals, whereas k6 measures the ability of antioxidants to regenerate oxidized fluorescein. These parameters (1) allow the detailed classification of cinnamic acids based on their structure-activity relationships, (2) provide insights into the interaction of alkoxyl radicals with fluorescein, and (3) account for the regeneration of fluorescein radicals by antioxidants. The application of the model to different antioxidants and fruit extracts reveals significant deviations from the results of traditional ORAC tests based on the area under the curve (AUC) approach. For example, lemon juice, rich in 'fast' antioxidants such as ascorbic acid, shows a high k5 value, in contrast to its low AUC values. This finding underscores the limitations of the AUC approach and highlights the advantages of our kinetic model in understanding antioxidative dynamics in food systems. This study presents a comprehensive, quantitative, mechanism-oriented approach to assessing antioxidant reactivity, demonstrating a significant improvement in ORAC assay applications.
Collapse
Affiliation(s)
- Umme Asma
- Faculty of Agricultural, Environment and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (U.A.); (S.Z.)
| | - Maria Letizia Bertotti
- Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy;
| | - Simone Zamai
- Faculty of Agricultural, Environment and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (U.A.); (S.Z.)
| | - Marcellus Arnold
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60624 Poznań, Poland;
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, 40129 Bologna, Italy;
| | - Matteo Scampicchio
- Faculty of Agricultural, Environment and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (U.A.); (S.Z.)
| |
Collapse
|
4
|
Nakanishi I, Shoji Y, Ohkubo K, Ito H, Fukuzumi S. Water-Induced Regeneration of a 2,2-Diphenyl-1-picrylhydrazyl Radical after Its Scandium Ion-Promoted Electron-Transfer Disproportionation in an Aprotic Medium. Molecules 2023; 28:5002. [PMID: 37446663 DOI: 10.3390/molecules28135002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
A neutral, stable radical, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•), has been frequently used to estimate the activity of antioxidants for more than 60 years. However, the number of reports about the effect of metal ions on the reactivity of DPPH• is quite limited. We have recently reported a unique electron-transfer disproportionation of DPPH• to produce the DPPH cations (DPPH+) and anions (DPPH-) upon the addition of scandium triflate [Sc(OTf)3 (OTf = OSO2CF3)] to an acetonitrile (MeCN) solution of DPPH•. The driving force of this reaction is suggested to be an interaction between DPPH- and Sc3+. In this study, it is demonstrated that the addition of H2O to the DPPH•-Sc(OTf)3 system in MeCN resulted in an increase in the absorption band at 519 nm due to DPPH•. This indicated that an electron-transfer comproportionation occurred to regenerate DPPH•. The regeneration of DPPH• was also confirmed by electron paramagnetic resonance (EPR) spectroscopy. The amount of DPPH• increased with an increasing amount of added H2O to reach a constant value. The detailed mechanism of regeneration of DPPH• was proposed based on the detailed spectroscopic and kinetic analyses, in which the reaction of DPPH+ with [(DPPH)2Sc(H2O)3]+ generated upon the addition of H2O to [(DPPH)2Sc]+ is the rate-determining step.
Collapse
Grants
- JP18K06620 Ministry of Education, Culture, Sports, Science and Technology
- JP20H02779 Ministry of Education, Culture, Sports, Science and Technology
- JP20H04819 Ministry of Education, Culture, Sports, Science and Technology
- JP18H04650 Ministry of Education, Culture, Sports, Science and Technology
- JP17H03010 Ministry of Education, Culture, Sports, Science and Technology
- JP16H02268 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| | - Yoshimi Shoji
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| | - Kei Ohkubo
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
- Institute for Advanced Co-Creation Studies, Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan
| | - Hiromu Ito
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
5
|
Angeli L, Morozova K, Scampicchio M. A kinetic-based stopped-flow DPPH • method. Sci Rep 2023; 13:7621. [PMID: 37164998 PMCID: PMC10172368 DOI: 10.1038/s41598-023-34382-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
The reaction kinetics of antioxidants with free radicals is crucial to screen their functionality. However, studying antioxidant-radical interactions is very challenging for fast electron-donor substances, such as ascorbic acid, because the reaction ends in a few seconds. Accordingly, this work proposes a rapid and sensitive method for the determination of the absolute rate constant of the reaction between fast antioxidants and DPPH•. The method consists of a stopped-flow spectrophotometric system, which monitors the decay of DPPH• during its interaction with antioxidants. A kinetic-based reaction mechanism fits the experimental data. Kinetic parameters include a second order kinetics (k1) and, depending on the type of antioxidant, a side reaction (k2). Ascorbic acid was the fastest antioxidant (k1 = 21,100 ± 570 M-1 s-1) in comparison with other eleven phenols, showing k1 values from 45 to 3070 M-1 s-1. Compounds like catechin, epicatechin, quercetin, rutin, and tannic, ellagic and syringic acids presented a side reaction (k2 from 15 to 60 M-1 s-1). Among seven fruit juices, strawberry was the fastest, while red plum the slowest. Overall, the proposed kinetic-based DPPH• method is simple, rapid, and suitable for studying the activity and capacity of different molecules, and food samples rich in fast antioxidants, like fruit juices.
Collapse
Affiliation(s)
- Lucrezia Angeli
- Faculty for Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 1, 39100, Bolzano, BZ, Italy
| | - Ksenia Morozova
- Faculty for Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 1, 39100, Bolzano, BZ, Italy
| | - Matteo Scampicchio
- Faculty for Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 1, 39100, Bolzano, BZ, Italy.
| |
Collapse
|
6
|
Effect of Extraction Period on Total Phenolics, Total Flavonoids, and Antioxidant Capacity of Ugandan Camellia sinensis (L) Kuntze, Black Primary Grades and Green Tea. J FOOD QUALITY 2023. [DOI: 10.1155/2023/3504280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Introduction. Globally, the consumption and production of tea are on the rise because of its beneficial constituents. Scarce literature exists on the effects of extraction periods on the contents of the biologically important and protective phytochemicals such as phenolics, flavonoids, and antioxidants in locally produced teas in Uganda. Aim. This study determined the effects of extraction periods on the aqueous total phenolic content (TPC) of local Camella sinensis, black primary grades and green tea, and their ecological differences, their total flavonoid content (TFC), and antioxidant capacities (AOC). Methods. Samples of local tea were collected from Kigezi, Ankole, and Buganda regions, and those of green tea were purchased from a local supermarket in Uganda. Four- and 40-minute infusions were separately prepared for each sample. Total phenolic and flavonoid contents were determined using the Folin–Ciocalteu and aluminium chloride methods using garlic acid and quercetin as standards, respectively. Antioxidant content was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing assay power (FRAP) methods, using ascorbic acid as the standard. Results. Green tea had the highest total phenolic content both with four-minute (9.50 ± 0.25 mgGAE/g) and 40-minute (25.81 ± 1.13 mgGAE/g) extractions, followed by D1 (4.14 ± 0.33 mgGAE/g) at four minutes and PF (23.60 ± 2.37 mgGAE/g) at 40 minutes. Regionally, Kigezi (4.71 ± 0.09 and 22.13 ± 0.85 mgGAE/g) at four and 40 minutes, respectively, gave the highest TPC. In TFC, tea from Buganda (4,371 ± 0.00 μgQE/g) was the highest. In DPPH and FRAP, GT (93.82 ± 0.03%, 39.04 ± 0.02 AAEμg/mL) was the best, followed by Buganda tea (88.71 ± 0.03%, 36.99 ± 0.01 AAEµg/mL), respectively. Conclusion. Longer extraction periods increase TPC in all teas. Green tea generates approximately twice the TPC generated by black tea in four-minute infusions. Green tea gives higher TPC, DPPH, and FRAP but less TFC than some black teas and is perhaps the best in terms of protection against oxidative damage to the body.
Collapse
|
7
|
The Novel Potentiometric Approach to Antioxidant Capacity Assay Based on the Reaction with Stable Radical 2,2'-diphenyl-1-picrylhydrazyl. Antioxidants (Basel) 2022; 11:antiox11101974. [PMID: 36290697 PMCID: PMC9598108 DOI: 10.3390/antiox11101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
For the first time, new possibilities of using the DPPH• as a signal-forming oxidant molecule with potentiometric detection are shown. The CV method confirmed the presence of a quasi-reversible potential-determining system DPPH•/DPPH-H under experimental conditions. This fact makes it possible to use DPPH• as the model of the oxidizing agent for obtaining an analytical signal by the potentiometry method. The potentiometric approach makes it possible to obtain the value of the Nernst slope and the antioxidant capacity in one experiment. It consists of an antioxidant supplement and two consecutive DPPH• supplements. In this case, the calculation of the Nernst slope is carried out by introducing the second addition of the oxidizing agent and constructing a calibration curve against the reaction background with an antioxidant. Solutions of individual antioxidants α-tocopherol, quercetin, (±)-catechin hydrate, and α-lipoic acid were studied by the developed approach. A high correlation with the results of spectrophotometric measurements is shown. At the same time, the potentiometry method is devoid of the concentration limitations of the spectrophotometric method, which was confirmed. In the study of plant materials extracts, a high correlation of antioxidant capacity, obtained by potentiometric and spectrophotometric methods, was shown only for objects whose color did not contribute to the DPPH• absorption. The versatility of the potentiometric method for studying objects of any color was shown.
Collapse
|
8
|
Scurti S, Caretti D, Mollica F, Di Antonio E, Amorati R. Chain-Breaking Antioxidant and Peroxyl Radical Trapping Activity of Phenol-Coated Magnetic Iron Oxide Nanoparticles. Antioxidants (Basel) 2022; 11:antiox11061163. [PMID: 35740061 PMCID: PMC9219998 DOI: 10.3390/antiox11061163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are important materials for biomedical applications, and phenol capping is a common procedure to passivate their surface. As phenol capped SPION have been reported to behave as antioxidants, herein, we investigate the mechanism underlying this activity by studying the reaction with alkyl peroxyl (ROO•) radicals. SPION were prepared by coprecipitation of Fe(II) and Fe(III), using phenolic antioxidants (gallic acid, Trolox and nordihydroguaiaretic acid) as post-synthesis capping agents and by different purification procedures. The reactivity of ROO• was investigated by inhibited autoxidation studies, using styrene as an oxidizable substrate (solvent MeCN, 30 °C) and azo-bis(isobutyronitrile) as a radical initiator. While unprotected, bare SPION behaved as prooxidant, accelerating the O2 consumption of styrene autoxidation, phenol capping provided a variable antioxidant effect that was dependent upon the purification degree of the material. Thoroughly washed SPION, containing from 7% to 14% (w/w) of phenols, had a low reactivity toward peroxyl radicals, while SPION with a higher phenol content (46% to 55%) showed a strong radical trapping activity. Our results indicate that the antioxidant activity of phenol-capped SPION can be caused by its release in a solution of weakly bound phenols, and that purification plays a major role in determining the properties of these materials.
Collapse
Affiliation(s)
- Stefano Scurti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, UdR INSTM of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (S.S.); (D.C.)
| | - Daniele Caretti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, UdR INSTM of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (S.S.); (D.C.)
| | - Fabio Mollica
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
| | - Erika Di Antonio
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
- Correspondence:
| |
Collapse
|
9
|
Ding Y, Morozova K, Imperiale S, Angeli L, Asma U, Ferrentino G, Scampicchio M. HPLC-Triple detector (Coulometric array, diode array and mass spectrometer) for the analysis of antioxidants in officinal plants. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|