1
|
Li MY, Guo QY, Wang J, Tang KQ, Lu HQ, Wang B, Xiong L. Antipyretic and Anti-Inflammatory Effects of Rectal Administration of Reduning Injection in Feverish Rats Induced by Lipopolysaccharide. Ther Hypothermia Temp Manag 2024; 14:191-196. [PMID: 37851988 DOI: 10.1089/ther.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
This study aimed to explore the antipyretic and anti-inflammatory effects of rectal administration of Reduning injection in feverish rats induced by lipopolysaccharide (LPS), and observe the temperature changes and inflammatory indexes. The selected rats were randomly divided into 6 groups, with 10 rats in each group, named as normal empty group, model group, intravenous group (2 mL/kg), low-dose enema group (1 mL/kg), middle-dose enema group (2 mL/kg), and high-dose enema group (4 mL/kg). The hourly temperature variations in rats injected with LPS in the abdomen were recorded. Five hours later, blood samples from the abdominal aorta were collected to monitor immunoglobulin M (IgM), immunoglobulin A (IgA), interleukin (IL)-6, and tumor necrosis factor (TNF)-α. At 5 hours, the fever peak induced by LPS appeared, and obvious antipyretic effects were observed; the effect was optimal in the medium dose enema group at 4 hours (p < 0.05); the IgM value in the enema groups, the intravenous group, and normal empty group was significantly lower than that in the model group; the IgA value in each group was higher than that in the model group, but there was no statistical significance (p > 0.05); values of IL-6 and TNF-α in each group were lower than those in the model group, and the difference was statistically significant except for the high-dose enema group (p > 0.05). Low-dose and medium-dose rectal administration of Reduning injection have inhibitory effects on IL-6, TNF-α, and IgM in feverish rats induced by LPS, but there is no obvious difference compared to intravenous administration and it could achieve an anti-inflammatory effect. There is a possibility of enhancing IgA immunity with rectal administration, but there is no obvious difference compared to intravenous administration, and rectal administration has no significant effect on mucosal immunity.
Collapse
Affiliation(s)
- Miao-Yuan Li
- First school of Clinical Medicine of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
- Department of Traditional Chinese Medicine, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Qin-Yuan Guo
- Department of Traditional Chinese Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
- Department of Traditional Chinese Medicine, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Juan Wang
- Department of Traditional Chinese Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
- Department of Traditional Chinese Medicine, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Kun-Quan Tang
- Department of Traditional Chinese Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
- Department of Traditional Chinese Medicine, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Huo-Qing Lu
- Department of Traditional Chinese Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
- Department of Traditional Chinese Medicine, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Bei Wang
- Department of Traditional Chinese Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
- Department of Traditional Chinese Medicine, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Lei Xiong
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Das A, Shahriar TG, Zehravi M, Sweilam SH, Alshehri MA, Ahmad I, Nafady MH, Emran TB. Clinical management of eye diseases: carotenoids and their nanoformulations as choice of therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03376-1. [PMID: 39167170 DOI: 10.1007/s00210-024-03376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Eye diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR), impose a substantial health cost on a worldwide scale. Carotenoids have emerged as intriguing candidates for pharmacological treatment of various disorders. Their therapeutic effectiveness, however, is hindered by poor solubility and vulnerability to degradation. Nanocarriers, such as nanoparticles, liposomes, and micelles, provide a transformational way to overcome these limits. This review explores the pharmacological potential of carotenoids, namely lutein, zeaxanthin, and astaxanthin, to treat several ocular disorders. The main emphasis is on their anti-inflammatory and antioxidant actions, which help to counteract inflammation and oxidative stress, crucial factors in the development of AMD and DR. The review evaluates the significant benefits of nano-formulated carotenoids, such as improved bioavailability, higher cellular absorption, precise administration to particular ocular tissues, and greater biostability, which make them superior to conventional carotenoids. Some clinical studies on the beneficial properties of carotenoids in eye diseases are discussed. Furthermore, safety and regulatory concerns are also taken into account. Ultimately, carotenoids, especially when created in their nano form, have significant potential for safeguarding eyesight and enhancing the overall well-being of several individuals afflicted with vision-endangering eye diseases.
Collapse
Affiliation(s)
- Amit Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
3
|
Mohamed AI, Erukainure OL, Salau VF, Islam MS. Impact of coffee and its bioactive compounds on the risks of type 2 diabetes and its complications: A comprehensive review. Diabetes Metab Syndr 2024; 18:103075. [PMID: 39067326 DOI: 10.1016/j.dsx.2024.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Coffee beans have a long history of use as traditional medicine by various indigenous people. Recent focus has been given to the health benefits of coffee beans and its bioactive compounds. Research on the bioactivities, applications, and effects of processing methods on coffee beans' phytochemical composition and activities has been conducted extensively. The current review attempts to provide an update on the biological effects of coffee on type 2 diabetes (T2D) and its comorbidities. METHODS Comprehensive literature search was carried out on peer-reviewed published data on biological activities of coffee on in vitro, in vivo and epidemiological research results published from January 2015 to December 2022, using online databases such as PubMed, Google Scholar and ScienceDirect for our searches. RESULTS The main findings were: firstly, coffee may contribute to the prevention of oxidative stress and T2D-related illnesses such as cardiovascular disease, retinopathy, obesity, and metabolic syndrome; secondly, consuming up to 400 mg/day (1-4 cups per day) of coffee is associated with lower risks of T2D; thirdly, caffeine consumed between 0.5 and 4 h before a meal may inhibit acute metabolic rate; and finally, both caffeinated and decaffeinated coffee are associated with reducing the risks of T2D. CONCLUSION Available evidence indicates that long-term consumption of coffee is associated with decreased risk of T2D and its complications as well as decreased body weight. This has been attributed to the consumption of coffee with the abundance of bioactive chemicals.
Collapse
Affiliation(s)
- Almahi I Mohamed
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa; Department of Microbiology, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa; Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
4
|
Teng C, Wu J, Zhang Z, Wang J, Yang Y, Dong C, Wu L, Lin Z, Hu Y, Wang J, Zhang X, Lin Z. Fucoxanthin ameliorates endoplasmic reticulum stress and inhibits apoptosis and alleviates intervertebral disc degeneration in rats by upregulating Sirt1. Phytother Res 2024; 38:2114-2127. [PMID: 37918392 DOI: 10.1002/ptr.8057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Endoplasmic reticulum stress (ERS) and apoptosis of nucleus pulposus (NP) cells are considered to be the main pathological factors of intervertebral disc degeneration (IDD). Fucoxanthin (FX), a marine carotenoid extracted from microalgae, has antioxidant, anti-inflammatory, and anticancer properties. The aim of this study was to investigate the effect of FX on NP cells induced by oxidative stress and its molecular mechanism. Primary NP cells of the lumbar vertebrae of rats were extracted and tested in vitro. qRT-PCR, western blot, immunofluorescence, and TUNEL staining were used to detect apoptosis, ERS, extracellular matrix (ECM), and Sirt1-related pathways. In vivo experiments, the recovery of IDD rats was determined by X-ray, hematoxylin and eosin, Safranin-O/Fast Green, Alcian staining, and immunohistochemistry. Our study showed that oxidative stress induced ERS, apoptosis, and ECM degradation in NP cells. After the use of FX, the expression of Sirt1 was up-regulated, the activation of PERK-eIF2α-ATF4-CHOP was decreased, and apoptosis and ECM degradation were decreased. At the same time, FX improved the degree of disc degeneration in rats in vivo. Our study demonstrates the effect of FX on improving IDD in vivo and in vitro, suggesting that FX may be a potential drug for the treatment of IDD.
Collapse
Affiliation(s)
- Cheng Teng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingtao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinquan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengji Dong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuezheng Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China
| | - Zhongke Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Yan J, Li Z, Liang Y, Yang C, Ou W, Mo H, Tang M, Chen D, Zhong C, Que D, Feng L, Xiao H, Song X, Yang P. Fucoxanthin alleviated myocardial ischemia and reperfusion injury through inhibition of ferroptosis via the NRF2 signaling pathway. Food Funct 2023; 14:10052-10068. [PMID: 37861458 DOI: 10.1039/d3fo02633g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Background: Myocardial ischemia and reperfusion injury (MIRI) is a severe complication of revascularization therapy in patients with myocardial infarction. Therefore, there is an urgent requirement to find more therapeutic solutions for MIRI. Recently, ferroptosis, which is characterized by lipid peroxidation, was considered a critical contributor to MIRI. Fucoxanthin (FX), a natural antioxidant carotenoid, which is abundant in brown seaweed, exerts protective effects under various pathological conditions. However, whether FX alleviates MIRI is unclear. This study aims to clarify the effects of FX on MIRI. Methods: Mice with left anterior descending artery ligation and reperfusion were used as in vivo models. Neonatal rat cardiomyocytes (NRCs) induced with hypoxia and reperfusion were used as in vitro models. TTC-Evans blue staining was performed to validate the infarction size. Transmission electron microscopy was employed to detect mitochondrial injury in cardiomyocytes. In addition, 4 weeks after MIRI, echocardiography was performed to measure cardiac function; fluorescent probes and western blots were used to detect ferroptosis. Results: TTC-Evans blue staining showed that FX reduced the infarction size induced by MIRI. Transmission electron microscopy showed that FX ameliorated the MIRI-induced myofibril loss and mitochondrion shrinkage. Furthermore, FX improved LVEF and LVFS and inhibited myocardial hypertrophy and fibrosis after 4 weeks in mice with MIRI. In the in vitro study, calcein AM/PI staining and TUNEL staining showed that FX reduced cell death caused by hypoxia and reperfusion treatment. DCFH-DA and MitoSOX probes indicated that FX inhibited cellular and mitochondrial reactive oxygen species (ROS). Moreover, C11-BODIPY 581/591 staining, ferro-orange staining, MDA assay, Fe2+ assay, 4-hydroxynonenal enzyme-linked immunosorbent assay, and western blot were performed and the results revealed that FX ameliorated ferroptosis in vitro and in vivo, as indicated by inhibiting lipid ROS and Fe2+ release, as well as by modulating ferroptosis hallmark FTH, TFRC, and GPX4 expression. Additionally, the protective effects of FX were eliminated by the NRF2 inhibitor brusatol, as observed from western blotting, C11-BODIPY 581/591 staining, and calcein AM/PI staining, indicating that FX exerted cardio-protective effects on MIRI through the NRF2 pathway. Conclusion: Our study showed that FX alleviated MIRI through the inhibition of ferroptosis via the NRF2 signaling pathway.
Collapse
Affiliation(s)
- Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Zehua Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Yu Liang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Wen Ou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Huaqiang Mo
- Department of Cardiology, Shenzhen People's Hospital, the Second Affiliated Hospital, Jinan University, Guangdong, China
| | - Min Tang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Deshu Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Chongbin Zhong
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Dongdong Que
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Liyun Feng
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Hua Xiao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Pingzhen Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| |
Collapse
|
6
|
Kim K, Hong HL, Kim GM, Leem J, Kwon HH. Eupatilin Ameliorates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting Inflammation, Oxidative Stress, and Apoptosis in Mice. Curr Issues Mol Biol 2023; 45:7027-7042. [PMID: 37754228 PMCID: PMC10530142 DOI: 10.3390/cimb45090444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication of sepsis. Eupatilin (EUP) is a natural flavone with multiple biological activities and has beneficial effects against various inflammatory disorders. However, whether EUP has a favorable effect on septic AKI remains unknown. Here, we examined the effect of EUP on lipopolysaccharide (LPS)-evoked AKI in mice. LPS-evoked renal dysfunction was attenuated by EUP, as reflected by reductions in serum creatinine and blood urea nitrogen levels. LPS injection also induced structural damage such as tubular cell detachment, tubular dilatation, brush border loss of proximal tubules, and upregulation of tubular injury markers. However, EUP significantly ameliorated this structural damage. EUP decreased serum and renal cytokine levels, prevented macrophage infiltration, and inhibited mitogen-activated protein kinase and NF-κB signaling cascades. Lipid peroxidation and DNA oxidation were increased after LPS treatment. However, EUP mitigated LPS-evoked oxidative stress through downregulation of NPDPH oxidase 4 and upregulation of antioxidant enzymes. EUP also inhibited p53-mediated apoptosis in LPS-treated mice. Therefore, these results suggest that EUP ameliorates LPS-evoked AKI through inhibiting inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Kiryeong Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| | - Hyo-Lim Hong
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| | - Gyun Moo Kim
- Department of Emergency Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| |
Collapse
|
7
|
In Vivo Assessment of the Effects of Mono-Carrier Encapsulated Fucoxanthin Nanoparticles on Type 2 Diabetic C57 Mice and Their Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11101976. [PMID: 36290699 PMCID: PMC9598562 DOI: 10.3390/antiox11101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoxanthin (FX) is a carotenoid from a marine origin that has an important role in our health, especially in the regulation and alleviation of type 2 diabetes. Its specific molecular structure makes it very unstable, which greatly affects its delivery in the body. In this study, FX was encapsulated in a mono-carrier using a hydrolyzed zein to form a nanocomplex with a stable structure and chemical properties (FZNP). Its stability was demonstrated by characterization and the efficacy of FX before and after encapsulation in alleviating diabetes in mice, which was evaluated by in vivo experiments. FZNP reduced the level of fasting blood glucose and restored it to normal levels in T2DM mice, which was not caused by a decrease in food intake, and effectively reduced oxidative stress in the organism. Both FX and FZNP repaired the hepatocyte and pancreatic β-cell damage, increased serum SOD and reduced INS values significantly, upregulated PI3K-AKT genes as well as CaMK and GNAs expression in the pancreas. FZNP increased ADPN and GSH-PX values more significantly and it decreased serum HOMA-IR and MDA values, upregulated GLUT2 expression, promoted glucose transport in pancreatic and hepatocytes, regulated glucose metabolism and glycogen synthesis with much superior effects than FX.
Collapse
|
8
|
Li N, Gao X, Zheng L, Huang Q, Zeng F, Chen H, Farag MA, Zhao C. Advances in fucoxanthin chemistry and management of neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154352. [PMID: 35917771 DOI: 10.1016/j.phymed.2022.154352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Neurodegenerative diseases are chronic, currently incurable, diseases of the elderly, which are characterized by protein misfolding and neuronal damage. Fucoxanthin, derived from marine brown algae, presents a promising candidate for the development of effective therapeutic strategies. HYPOTHESIS AND PURPOSE The relationship between neurodegenerative disease management and fucoxanthin has not yet been clarified. This study focuses on the fundamental mechanisms and targets of fucoxanthin in Alzheimer's and Parkinson's disease management, showing that communication between the brain and the gut contributes to neurodegenerative diseases and early diagnosis of ophthalmic diseases. This paper also presents, new insights for future therapeutic directions based on the integrated application of artificial intelligence. CONCLUSION Fucoxanthin primarily binds to amyloid fibrils with spreading properties such as Aβ, tau, and α-synuclein to reduce their accumulation levels, alleviate inflammatory factors, and restore mitochondrial membranes to prevent oxidative stress via Nrf2 and Akt signaling pathways, involving reduction of specific secretases. In addition, fucoxanthin may serve as a preventive diagnosis for neurodegenerative diseases through ophthalmic disorders. It can modulate gut microbes and has potential for the alleviation and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxiang Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lingjun Zheng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qihui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongbin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Mohibbullah M, Haque MN, Sohag AAM, Hossain MT, Zahan MS, Uddin MJ, Hannan MA, Moon IS, Choi JS. A Systematic Review on Marine Algae-Derived Fucoxanthin: An Update of Pharmacological Insights. Mar Drugs 2022; 20:279. [PMID: 35621930 PMCID: PMC9146768 DOI: 10.3390/md20050279] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Fucoxanthin, belonging to the xanthophyll class of carotenoids, is a natural antioxidant pigment of marine algae, including brown macroalgae and diatoms. It represents 10% of the total carotenoids in nature. The plethora of scientific evidence supports the potential benefits of nutraceutical and pharmaceutical uses of fucoxanthin for boosting human health and disease management. Due to its unique chemical structure and action as a single compound with multi-targets of health effects, it has attracted mounting attention from the scientific community, resulting in an escalated number of scientific publications from January 2017 to February 2022. Fucoxanthin has remained the most popular option for anti-cancer and anti-tumor activity, followed by protection against inflammatory, oxidative stress-related, nervous system, obesity, hepatic, diabetic, kidney, cardiac, skin, respiratory and microbial diseases, in a variety of model systems. Despite much pharmacological evidence from in vitro and in vivo findings, fucoxanthin in clinical research is still not satisfactory, because only one clinical study on obesity management was reported in the last five years. Additionally, pharmacokinetics, safety, toxicity, functional stability, and clinical perspective of fucoxanthin are substantially addressed. Nevertheless, fucoxanthin and its derivatives are shown to be safe, non-toxic, and readily available upon administration. This review will provide pharmacological insights into fucoxanthin, underlying the diverse molecular mechanisms of health benefits. However, it requires more activity-oriented translational research in humans before it can be used as a multi-target drug.
Collapse
Affiliation(s)
- Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Md. Nazmul Haque
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
| | - Jae-Suk Choi
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| |
Collapse
|
10
|
Pajot A, Hao Huynh G, Picot L, Marchal L, Nicolau E. Fucoxanthin from Algae to Human, an Extraordinary Bioresource: Insights and Advances in up and Downstream Processes. Mar Drugs 2022; 20:md20040222. [PMID: 35447895 PMCID: PMC9027613 DOI: 10.3390/md20040222] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Fucoxanthin is a brown-colored pigment from algae, with great potential as a bioactive molecule due to its numerous properties. This review aims to present current knowledge on this high added-value pigment. An accurate analysis of the biological function of fucoxanthin explains its wide photon absorption capacities in golden-brown algae. The specific chemical structure of this pigment also leads to many functional activities in human health. They are outlined in this work and are supported by the latest studies in the literature. The scientific and industrial interest in fucoxanthin is correlated with great improvements in the development of algae cultures and downstream processes. The best fucoxanthin producing algae and their associated culture parameters are described. The light intensity is a major influencing factor, as it has to enable both a high biomass growth and a high fucoxanthin content. This review also insists on the most eco-friendly and innovative extraction methods and their perspective within the next years. The use of bio-based solvents, aqueous two-phase systems and the centrifugal partition chromatography are the most promising processes. The analysis of the global market and multiple applications of fucoxanthin revealed that Asian companies are major actors in the market with macroalgae. In addition, fucoxanthin from microalgae are currently produced in Israel and France, and are mostly authorized in the USA.
Collapse
Affiliation(s)
- Anne Pajot
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
- Correspondence:
| | - Gia Hao Huynh
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| | - Laurent Picot
- Unité Mixte de Recherche CNRS 7266 Littoral Environnement et Sociétés (LIENSs), Université La Rochelle, F-17042 La Rochelle, France;
| | - Luc Marchal
- Génie des Procédés Environnement (GEPEA), Université Nantes, F-44000 Saint Nazaire, France;
| | - Elodie Nicolau
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| |
Collapse
|
11
|
Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization. Redox Biol 2022; 52:102297. [PMID: 35334248 PMCID: PMC8956882 DOI: 10.1016/j.redox.2022.102297] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Uveitis causes blindness and critical visual impairment in people of all ages, and retinal microglia participate in uveitis progression. Unfortunately, effective treatment is deficient. Icariin (ICA) is a bioactive monomer derived from Epimedium. However, the role of ICA in uveitis remains elusive. Our study indicated that ICA alleviated intraocular inflammation in vivo. Further results showed the proinflammatory M1 microglia could be transferred to anti-inflammatory M2 microglia by ICA in the retina and HMC3 cells. However, the direct pharmacological target of ICA is unknown, to this end, proteome microarrays and molecular simulations were used to identify the molecular targets of ICA. Data showed that ICA binds to peroxiredoxin-3 (PRDX3), increasing PRDX3 protein expression in both a time- and a concentration-dependent manner and promoting the subsequent elimination of H2O2. In addition, GPX4/SLC7A11/ACSL4 pathways were activated accompanied by PRDX3 activation. Functional tests demonstrated that ICA-derived protection is afforded through targeting PRDX3. First, ICA-shifted microglial M1/M2 phenotypic polarization was no longer detected by blocking PRDX3 both in vivo and in vitro. Next, ICA-activated GPX4/SLC7A11/ACSL4 pathways and downregulated H2O2 production were also reversed via inhibiting PRDX3 both in vivo and in vitro. Finally, ICA-elicited positive effects on intraocular inflammation were eliminated in PRDX3-deficient retina from experimental autoimmune uveitis (EAU) mice. Taking together, ICA-derived PRDX3 activation has therapeutic potential for uveitis, which might be associated with modulating microglial M1/M2 phenotypic polarization.
Collapse
|
12
|
Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-Gandara J. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES 2021; 11:10806. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - Md. Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Habiba Rahman Kheya
- Department of Sociology, Faculty of Social Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|