1
|
Flores D, Meudec E, Dias ALDS, Sommerer N. A Versatile Ultra-High-Performance Liquid Chromatography-Full-Scan High-Resolution Mass Spectrometry Method to Quantify Wine Polyphenols. Methods Protoc 2024; 7:82. [PMID: 39452796 PMCID: PMC11510656 DOI: 10.3390/mps7050082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Polyphenols are responsible for wine colour and astringency, and, as antioxidants, they also have beneficial health properties. In this work, we developed a robust full-scan high-resolution mass spectrometry method for the quantification of 90 phenolic compounds in wine samples (either red, rosé, or white wine), using a UHPLC-OrbitrapTM system. With this method, we could conduct a detailed analysis of phenolic compounds in red, rosé, and white wines with great selectivity due to sub-ppm mass accuracy. Moreover, accessing the full-scan spectrum enabled us to monitor all the other compounds detected in the sample, facilitating the adaptability of this method to new phenolic compounds if needed.
Collapse
Affiliation(s)
- Damien Flores
- SPO, Université de Montpellier, F-34000 Montpellier, France (A.L.d.S.D.)
- INRAE, Institut Agro, F-34000 Montpellier, France
- INRAE, PROBE Research Infrastructure, PFP Polyphenol Analysis Facility, F-34060 Montpellier, France
| | - Emmanuelle Meudec
- SPO, Université de Montpellier, F-34000 Montpellier, France (A.L.d.S.D.)
- INRAE, Institut Agro, F-34000 Montpellier, France
- INRAE, PROBE Research Infrastructure, PFP Polyphenol Analysis Facility, F-34060 Montpellier, France
| | - Aécio Luís de Sousa Dias
- SPO, Université de Montpellier, F-34000 Montpellier, France (A.L.d.S.D.)
- INRAE, Institut Agro, F-34000 Montpellier, France
- INRAE, PROBE Research Infrastructure, PFP Polyphenol Analysis Facility, F-34060 Montpellier, France
| | - Nicolas Sommerer
- SPO, Université de Montpellier, F-34000 Montpellier, France (A.L.d.S.D.)
- INRAE, Institut Agro, F-34000 Montpellier, France
- INRAE, PROBE Research Infrastructure, PFP Polyphenol Analysis Facility, F-34060 Montpellier, France
| |
Collapse
|
2
|
Karastergiou A, Gancel AL, Jourdes M, Teissedre PL. Valorization of Grape Pomace: A Review of Phenolic Composition, Bioactivity, and Therapeutic Potential. Antioxidants (Basel) 2024; 13:1131. [PMID: 39334790 PMCID: PMC11428247 DOI: 10.3390/antiox13091131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Vitis vinifera L., commonly known as grapes, is one of the most widely cultivated crops worldwide, with over 80% used for wine production. However, the winemaking process generates substantial residues, including grape pomace (GP), wine lees, and wastewater, which can pose significant environmental and economic challenges. Among these, GP stands out not only as a waste product but also as a rich source of polyphenols-bioactive compounds with recognized antioxidant and anti-inflammatory properties. Recent advancements have expanded the application of GP-derived extracts, particularly in the health and food industries, due to their potent bioactive properties. This review provides a comprehensive overview of the valorization of GP, focusing on its phenolic composition and therapeutic potential. It evokes innovative, environmentally friendly extraction techniques and integrated methods for the chemical analysis of these valuable compounds. Additionally, the health benefits of GP polyphenols are explored, with recent experimental findings examining their metabolism and highlighting the key role of gut microbiota in these processes. These insights contribute to a deeper understanding of the biological activity of GP extracts and underscore their growing significance as a high-added-value product. By illustrating how winemaking by-products can be transformed into natural therapeutic agents, this review emphasizes the importance of sustainable development and eco-friendly waste management practices, significantly contributing to the advancement of a circular economy.
Collapse
Affiliation(s)
| | | | | | - Pierre-Louis Teissedre
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, F-33882 Villenave d’Ornon, France; (A.K.); (A.-L.G.); (M.J.)
| |
Collapse
|
3
|
Xiong H, Sun S, Zhang W, Zhao D, Liu X, Tian Y, Feng S. Spatial metabolomics method to reveal the differences in chemical composition of raw and honey-fried Stemona tuberosa Lour. by using UPLC-Orbitrap Fusion MS and desorption electrospray ionization mass spectrometry imaging. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39072901 DOI: 10.1002/pca.3428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Stemona tuberosa Lour. (ST) is a significant traditional Chinese medicine (TCM) renowned for its antitussive and insecticidal properties. ST is commonly subjected to processing in clinical practice before being utilized as a medicinal substance. Currently, the customary technique for processing ST is honey-fried. Nevertheless, the specific variations in chemical constituents of ST before and after honey-fried remain unclear. OBJECTIVE This work aimed to analyze the variations in chemical constituents of ST before and after honey-fried and to study the distribution of differential markers in the roots. METHODS UPLC-Orbitrap Fusion MS combined with molecular network analysis was used to analyze the metabolome of ST and honey-fried ST (HST) and to screen the differential metabolites by multivariate statistical analysis. Spatial metabolomics was applied to study the distribution of differential metabolites by desorption electrospray ionization mass spectrometry imaging (DESI-MSI). RESULTS The ST and HST exhibited notable disparities, with 56 and 61 chemical constituents found from each, respectively. After processing, the types of alkaloids decreased, and 12 differential metabolites were screened from the common compounds. The notable component variations were epibisdehydro-tuberostemonine J, neostenine, tuberostemonine, croomine, neotuberostemonine, and so forth. MSI visualized the spatial distribution of differential metabolites. CONCLUSIONS Our research provided a rapid and effective visualization method for the identification and spatial distribution of metabolites in ST. Compared with the traditional method, this method offered more convincing data supporting the processing mechanism investigations of Stemona tuberosa from a macroscopic perspective.
Collapse
Affiliation(s)
- Haixuan Xiong
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuding Sun
- Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weiwei Zhang
- Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Di Zhao
- Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xuefang Liu
- Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Suxiang Feng
- Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P. R. China, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Lola D, Miliordos DE, Goulioti E, Kontoudakis N, Myrtsi ED, Haroutounian SA, Kotseridis Y. Assessment of the volatile and non-volatile profile of Savatiano PGI wines as affected by various terroirs in Attica, Greece. Food Res Int 2023; 174:113649. [PMID: 37981363 DOI: 10.1016/j.foodres.2023.113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
Establishing the concept of terroir in wines, combined with the exploitation of native grape varieties, is considered a viable alternative to produce quality wines for increasing interest in the wine market. The aim of this study is the characterization of Protected Geographical Indication (PGI) Savatiano white wines from different regions of Attica (Greece), through the chemical and sensory description of the aroma of wines and the determination of their phenolic profiles. The wines produced with the same vinification protocol were evaluated using the descriptive sensory analysis method while they underwent profiling of volatile and phenolic compounds by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) respectively. The presence of regional differences within the wines was also explored, elaborated with variables that contribute to their differentiation, such as soil type, monthly average temperature, and rainfall. Volatile and sensory profiles of the wines separated the regions and confirmed that sub-regional differences attributed mainly to soil characteristics affect wine aroma. The wines from the east part of Attica were higher in esters, terpenes and higher alcohols with high scores in fruity and blossoms attributes while wines from the north part of Attica presented higher intensity of mineral, nutty and herbaceous attributes. The separations based solely on the phenolic compounds concentration were less clear but a relationship was found between the content of phenolic acids and flavonoids and the studied regions. To our knowledge this is the first characterization of Savatiano PGI wines of Attica generating a fingerprint including chemical composition and sensory aroma characteristics to differentiate wines, combining this pattern with particular sub-regions.
Collapse
Affiliation(s)
- Despina Lola
- Laboratory of Enology and Alcoholic Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Dimitrios E Miliordos
- Laboratory of Enology and Alcoholic Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Elli Goulioti
- Laboratory of Enology and Alcoholic Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Nikolaos Kontoudakis
- Department of Agricultural Biotechnology and Oenology, International Hellenic University, 1st km Drama-Mikrochori, 66100 Drama, Greece
| | - Eleni D Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Serkos A Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Yorgos Kotseridis
- Laboratory of Enology and Alcoholic Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| |
Collapse
|
5
|
Curtasu MV, Nørskov NP. Comprehensive quantification of flavonoids and salicylic acid representative of Salix spp. using microLiquid Chromatography-Triple Quadrupole Mass Spectrometry: the importance of drying procedures and extraction solvent when performing classical solid-liquid extraction. J Chromatogr A 2023; 1705:464139. [PMID: 37352692 DOI: 10.1016/j.chroma.2023.464139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023]
Abstract
Willow (Salix spp.) is gaining an increasing interest as a fast-growing tree with high biomass yield from low agricultural inputs, which contains potentially bioactive compounds. The present work aimed to develop a high-yield extraction procedure combined with robust, sensitive and fast microLiquid Chromatography-Triple Quadrupole Mass Spectrometry (LC-MS/MS) based method for comprehensively quantifying flavonoids and salicylic acid in the bark of Salix spp. We have investigated the effect of freeze- and oven-drying procedures and five extraction solvents on the yield of individual flavonoid and salicylic acid when performing classical solid-liquid extraction. The freeze-drying was the best drying procedure for preserving monomeric and polymeric flavan-3-ols, whereas other flavonoids were less affected. Salicylic acid was not affected by the drying procedures. The best extraction solvent in terms of the yield of individual flavonoid among the tested solvents in this study was the combination of methanol acidified with 1% hydrochloric acid. LC-MS/MS method has shown a high recovery percentage (≥80%), good precision and overall robustness.
Collapse
Affiliation(s)
- Mihai Victor Curtasu
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Alle 20, Tjele 8830, Denmark.
| | - Natalja P Nørskov
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Alle 20, Tjele 8830, Denmark
| |
Collapse
|
6
|
Myrtsi ED, Vlachostergios DN, Petsoulas C, Evergetis E, Koulocheri SD, Haroutounian SA. An Interdisciplinary Assessment of Biochemical and Antioxidant Attributes of Six Greek Vicia sativa L. Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2807. [PMID: 37570961 PMCID: PMC10421230 DOI: 10.3390/plants12152807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Common vetch (Vicia sativa L.) is one of the most cultivated feed crops with extensive agricultural diversity and numerous cultivars. This study concerns the first-time investigation of the dry plant biomass and grains of six vetch cultivars to define the detailed fingerprint of their phenolic and fatty acid content, along with their respective antioxidant potencies. The results revealed a substantial variation in the feed quality traits among the tested Vicia sativa varieties, highlighting the crucial role and influence the genotype plays in the achievement of high-quality livestock nutrition. Among the six varieties tested, Istros and M-6900 displayed a particularly intriguing phytochemical profile characterized by elevated phenolic content, significant antioxidant potency and remarkably high fatty acid indices. These findings are indicative of the great potential of these varieties to function as suitable candidates for incorporation into farm animal diets either in the form of dry biomass (hay) or as a grain feed additive.
Collapse
Affiliation(s)
- Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (E.E.); (S.D.K.)
| | - Dimitrios N. Vlachostergios
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization ELGO-DIMITRA, 41335 Larissa, Greece;
| | - Christos Petsoulas
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization ELGO-DIMITRA, 41335 Larissa, Greece;
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (E.E.); (S.D.K.)
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (E.E.); (S.D.K.)
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (E.E.); (S.D.K.)
| |
Collapse
|
7
|
Difonzo G, Troilo M, Casiello M, D’Accolti L, Caponio F. Autohydrolysis Application on Vine Shoots and Grape Stalks to Obtain Extracts Enriched in Xylo-Oligosaccharides and Phenolic Compounds. Molecules 2023; 28:3760. [PMID: 37175170 PMCID: PMC10180318 DOI: 10.3390/molecules28093760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Agronomic practices and the winemaking process lead to the production of considerable quantities of waste and by-products. These are often considered waste with negative effects on environmental sustainability. However, vine shoots and grape stalks can be reused, representing a potential source of xylo-oligosaccharides and polyphenols. In this context, the purpose of this work was to obtain enriched extracts using three different autohydrolysis treatments with (i) H2O, (ii) H2O:EtOH, and (iii) H2O:Amberlyst. The obtained extracts were characterized by their xylo-oligosaccharide and polyphenol profiles using LC-MS techniques. The use of ethanol during autohydrolysis allowed for greater extraction of xylan-class compounds, especially in vine shoot samples, while an increase in antioxidant activity (128.04 and 425.66 µmol TE/g for ABTS and DPPH, respectively) and in total phenol content (90.92 mg GAE/g) was obtained for grape stalks.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola165, 70126 Bari, Italy; (G.D.); (M.T.)
| | - Marica Troilo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola165, 70126 Bari, Italy; (G.D.); (M.T.)
| | - Michele Casiello
- Chemistry Department, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (M.C.); (L.D.)
| | - Lucia D’Accolti
- Chemistry Department, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (M.C.); (L.D.)
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola165, 70126 Bari, Italy; (G.D.); (M.T.)
| |
Collapse
|
8
|
Myrtsi ED, Evergetis E, Koulocheri SD, Haroutounian SA. Bioactivity of Wild and Cultivated Legumes: Phytochemical Content and Antioxidant Properties. Antioxidants (Basel) 2023; 12:antiox12040852. [PMID: 37107225 PMCID: PMC10135128 DOI: 10.3390/antiox12040852] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The global demand for increased meat production has brought to the surface several obstacles concerning environmental impacts, animals’ welfare, and quality features, revealing the need to produce safe foodstuffs with an environmentally acceptable procedure. In this regard, the incorporation of legumes into animal diets constitutes a sustainable way out that prevents these apprehensions. Legumes are plant crops belonging to the Fabaceae family and are known for their rich content of secondary metabolites., displaying significant antioxidant properties and a series of health and environmental benefits. The study herein aims to investigate the chemical composition and antioxidant activities of indigenous and cultivated legume plants used for food and feed. The respective results indicate that the methanolic extract of Lathyrus laxiflorus (Desf.) Kuntze displayed the highest phenolic (64.8 mg gallic acid equivalents/g extract) and tannin (419.6 mg catechin equivalents/g extract) content, while the dichloromethane extract of Astragalus glycyphyllos L., Trifolium physodes Steven ex M.Bieb. and Bituminaria bituminosa (L.) C.H.Stirt. plant samples exhibited the richest content in carotenoids lutein (0.0431 mg/g A. glycyphyllos extract and 0.0546 mg/g B. bituminosa extract), α-carotene (0.0431 mg/g T. physodes extract) and β-carotene (0.090 mg/g T. physodes extract and 0.3705 mg/g B. bituminosa extract) establishing their potential role as vitamin A precursor sources. Results presented herein verify the great potential of Fabaceae family plants for utilization as pasture plants and/or dietary ingredients, since their cultivation has a positive impact on the environment, and they were found to contain essential nutrients capable to improve health, welfare, and safety.
Collapse
Affiliation(s)
- Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
9
|
Vacca M, Pinto D, Annunziato A, Ressa A, Calasso M, Pontonio E, Celano G, De Angelis M. Gluten-Free Bread Enriched with Artichoke Leaf Extract In Vitro Exerted Antioxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2023; 12:antiox12040845. [PMID: 37107220 PMCID: PMC10135093 DOI: 10.3390/antiox12040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to its high nutritional value and broad beneficial effects, the artichoke plant (Cynara cardunculus L.) is an excellent healthy food candidate. Additionally, the artichoke by-products are usually discarded even though they still contain a huge concentration of dietary fibers, phenolic acids, and other micronutrients. The present work aimed to characterize a laboratory-made gluten-free bread (B) using rice flour supplemented with a powdered extract from artichoke leaves (AEs). The AE, accounting for the 5% of titratable chlorogenic acid, was added to the experimental gluten-free bread. Accounting for different combinations, four different bread batches were prepared. To evaluate the differences, a gluten-free type-II sourdough (tII-SD) was added in two doughs (SB and SB-AE), while the related controls (YB and YB-AE) did not contain the tII-SD. Profiling the digested bread samples, SB showed the lowest glycemic index, while SB-AE showed the highest antioxidant properties. The digested samples were also fermented in fecal batches containing viable cells from fecal microbiota samples obtained from healthy donors. Based on plate counts, no clear tendencies emerged concerning the analyzed microbial patterns; by contrast, when profiling volatile organic compounds, significant differences were observed in SB-AE, exhibiting the highest scores of hydrocinnamic and cyclohexanecarboxylic acids. The fecal fermented supernatants were recovered and assayed for healthy properties on human keratinocyte cell lines against oxidative stress and for effectiveness in modulating the expression of proinflammatory cytokines in Caco-2 cells. While the first assay emphasized the contribution of AE to protect against stressor agents, the latter enlightened how the combination of SB with AE decreased the cellular TNF-α and IL1-β expression. In conclusion, this preliminary study suggests that the combination of AE with sourdough biotechnology could be a promising tool to increase the nutritional and healthy features of gluten-free bread.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project-HMPA, Giuliani SpA, 20129 Milan, Italy
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Arianna Ressa
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
10
|
Bocsan IC, Măgureanu DC, Pop RM, Levai AM, Macovei ȘO, Pătrașca IM, Chedea VS, Buzoianu AD. Antioxidant and Anti-Inflammatory Actions of Polyphenols from Red and White Grape Pomace in Ischemic Heart Diseases. Biomedicines 2022; 10:biomedicines10102337. [PMID: 36289599 PMCID: PMC9598344 DOI: 10.3390/biomedicines10102337] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Grape pomace (GP) represents a very reliable source of polyphenols because it could be found globally as a remnant of the wine industry. During the winemaking process, two types of GP are generated: red GP and white GP, according to the produced wine, red or white. Grape pomace represents a viable source of polyphenols, mainly flavanols, procyanidins anthocyanins, and resveratrol which possess antioxidant and anti-inflammatory activities. Multiple differences were observed between red and white GP in terms of their antioxidant and anti-inflammatory activity in both in vitro and in vivo studies. Although most studies are focused on the antioxidant and anti-inflammatory effect of red grape pomace, there are still many variables that need to be taken into consideration, as well as extensive study of the white GP. It was observed that in both in vitro and in vivo studies, the GP polyphenols have a direct antioxidant activity by acting as a free radical scavenger or donating a hydrogen atom. It also possesses an indirect antioxidant and anti-inflammatory activity by reducing mitochondrial reactive oxygen species (ROS) generation, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κβ), and inhibitor of nuclear factor kappa-B kinase subunit beta (Iκκβ) levels or nitrate oxide-4 (NOX4) expression and by increasing the levels of antioxidants enzymes like superoxide dismutase (SOD), catalase (CAT) glutathione reductase (GRx) and glutathione peroxidase(GPx). Besides these activities, many beneficial effects in ischemic heart diseases were also observed, such as the maintenance of the ventricular function as close as possible to normal, and the prevention of infarcted area extension. In this context, this review intends to present the actual knowledge of grape pomace’s potential antioxidant and anti-inflammatory activity in ischemic heart disease, knowledge gathered from existing in vitro and in vivo studies focused on this.
Collapse
Affiliation(s)
- Ioana Corina Bocsan
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| | - Dan Claudiu Măgureanu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Raluca Maria Pop
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
- Correspondence:
| | - Antonia Mihaela Levai
- Faculty of Medicine, Department Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 3-5, Clinicilor Street, 400012 Cluj Napoca, Romania
| | - Ștefan Octavian Macovei
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Ioana Maria Pătrașca
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Anca Dana Buzoianu
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| |
Collapse
|
11
|
Simultaneous Determination of Fifteen Polyphenols in Fruit Juice Using Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry Combining Dispersive Liquid-Liquid Microextraction. Int J Anal Chem 2022; 2022:5486290. [PMID: 35371261 PMCID: PMC8967586 DOI: 10.1155/2022/5486290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are secondary metabolites of plants and used as effective antioxidants in dietary supplements, whose main sources are fruits, vegetables, and grains. To clarify the content and distribution of polyphenols in different fruit species samples accurately, a rapid and sensitive ultrahigh-pressure liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method combining dispersive liquid-liquid microextraction (DLLME) was developed for quantitative determination of fifteen polyphenol compounds in fruit juice. In this method, the targets were first extracted from 1 g of fruit juice sample using 10 mL of 80% ethanol solution by ultrasonic-assisted extraction (UAE). Then, 1.0 mL of UAE extracted solution, 60 μL of n-octanol and 2.0 mL of H2O were performed in the following DLLME procedure. A C18 reversed-phase column, ZORBAX SB (100 × 4.6 mm, 3.5 μm), was proposed under gradient elution with 0.1% formic acid aqueous solution and methanol mobile phases for the determination of 15 polyphenols, allowing us to obtain polyphenolic profiles in less than 23.0 min. Under the optimum conditions, the enrichment factors ranged from 162 to 194. The results showed that the 15 polyphenols had linear correlation coefficients (R2) more than 0.99. The limits of detection (LODs) were between 18.3 and 103.5 ng/g, and the average recoveries were between 96.9 and 116.3% with interday relative standard deviations (RSDs) ranging from 4.4 to 8.2% in all cases. The method was successfully applied to the analysis of real fruit juice samples and presented itself as a simple, rapid, practical, and environment-friendly technique.
Collapse
|
12
|
Mavrommatis A, Simitzis PE, Kyriakaki P, Giamouri E, Myrtsi ED, Evergetis E, Filippi K, Papapostolou H, Koulocheri SD, Pappas AC, Koutinas A, Haroutounian SA, Tsiplakou E. Immune-Related Gene Expression Profiling of Broiler Chickens Fed Diets Supplemented with Vinification Byproducts: A Valorization Approach II. Animals (Basel) 2021; 11:ani11113038. [PMID: 34827771 PMCID: PMC8614383 DOI: 10.3390/ani11113038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The valorization of grape byproducts appears to be a sustainable bioeconomic strategy that could promote the substitution of synthetic with natural antioxidant compounds in the food and feed industry. The nutritional physiology of broiler chickens requires special attention to the interactions between nutrients and antioxidant mechanisms since the stressor signals of factory farming could impair the immune status, resulting in detrimental effects on broilers’ performance. The objective of this study was to assess the inclusion of grape byproducts (grape pomace, wine lees, and stem extract) on the transcriptional profiling of genes regulating the immune system in the liver, bursa of Fabricius, and spleen. The dietary supplementation of grape byproducts rich in polyphenolic compounds decreased the mRNA levels of the predominant pro-inflammatory receptor in the liver, while in the spleen, the stem extract diet upregulated the aforementioned receptor. Upregulation of interleukin 8 was observed in the bursa of Fabricius and spleen of the stems extract-fed broilers. Although grape byproducts depicting a sustainable source of bioactive compounds with vast antioxidant potential, there were unveiled preliminary insights for immune stimulation at the transcriptional level. Abstract The valorization of vinification byproducts portrays a promising bioprocess for the enrichment of animals’ diet with bioactive compounds, such as polyphenols, which could regulate the immune response. Therefore, the impact of dietary grounded grape pomace (GGP), wine lees extract (WYC), and grape stem extract (PE) on the relative transcript level of immune related genes of broiler chickens were examined. Two hundred forty, one-day-old as hatched (male/female) chicks (Ross 308) were allocated to four dietary groups, with four replicate pens each with 15 birds. Birds were fed either a basal diet (CON) or the basal diet supplemented with 2.5% GGP, or 0.2% WYC, or 0.1% PE for 42 d. The relative expression of immune-related genes was investigated using a real-time PCR platform. The mRNA levels of Toll-like Receptor 4 (TLR4) were downregulated (p = 0.039) in the liver of broilers fed the GGP-containing diet compared to the CON, while in the spleen of PE-fed broilers, TLR4 was significantly upregulated (p = 0.043). The mRNA levels of interleukin 8 (IL8) tended to upregulate (p = 0.099) in the bursa of Fabricius and were significantly increased (p = 0.036) in the spleen of broilers fed the PE diet. Vinification byproducts depict a promising sustainable source of polyphenols for the poultry feed industry, but more research is needed under field conditions.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.M.); (P.K.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Panagiotis E. Simitzis
- Laboratory of Animal Breeding & Husbandry, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Panagiota Kyriakaki
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.M.); (P.K.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Elisavet Giamouri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.M.); (P.K.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.M.); (P.K.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.M.); (P.K.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Katiana Filippi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Harris Papapostolou
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.M.); (P.K.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.M.); (P.K.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Apostolis Koutinas
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.M.); (P.K.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.M.); (P.K.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (A.C.P.); (S.A.H.)
- Correspondence: ; Tel.: +30-2105294435; Fax: +30-2105294413
| |
Collapse
|
13
|
Mavrommatis A, Giamouri E, Myrtsi ED, Evergetis E, Filippi K, Papapostolou H, Koulocheri SD, Zoidis E, Pappas AC, Koutinas A, Haroutounian SA, Tsiplakou E. Antioxidant Status of Broiler Chickens Fed Diets Supplemented with Vinification By-Products: A Valorization Approach. Antioxidants (Basel) 2021; 10:1250. [PMID: 34439498 PMCID: PMC8389203 DOI: 10.3390/antiox10081250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
Vinification by-products display great potential for utilization as feed additives rich in antioxidant compounds. Thus, the effect of dietary ground grape pomace (GGP), wine lees extract rich in yeast cell walls (WYC), and grape stem extracts (PE) on the relative expression of several genes involved in liver oxidative mechanisms and the oxidative status of the blood and breast muscle of broiler chickens was investigated. In total, 240 one-day-old as hatched chicks (Ross 308) were assigned to four treatments, with four replicate pens and 15 birds in each pen. Birds were fed either a basal diet (CON) or a basal diet supplemented with 25 g/kg GGP, or 2 g/kg WYC, or 1 g starch including 100 mg pure stem extract/kg (PE) for 42 days. The polyphenolic content of vinification by-products was determined using an LC-MS/MS library indicating as prevailing compounds procyanidin B1 and B2, gallic acid, caftaric acid, (+)-catechin, quercetin, and trans-resveratrol. Body weight and feed consumption were not significantly affected. The relative transcript level of GPX1 and SOD1 tended to increase in the liver of WYC-fed broilers, while NOX2 tended to decrease in the PE group. SOD activity in blood plasma was significantly increased in WYC and PE compared to the CON group. The total antioxidant capacity measured with FRAP assay showed significantly higher values in the breast muscle of PE-fed broilers, while the malondialdehyde concentration was significantly decreased in both WYC- and PE-fed broilers compared to the CON group. The exploitation of vinification by-products as feed additives appears to be a promising strategy to improve waste valorization and supply animals with bioactive molecules capable of improving animals' oxidative status and products' oxidative stability.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Elisavet Giamouri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Katiana Filippi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Harris Papapostolou
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Apostolis Koutinas
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| |
Collapse
|