1
|
Cha JJ, Yum Y, Kim YH, Kim EJ, Rah YC, Park E, Im GJ, Song JJ, Chae SW, Choi J, Joo HJ. Association of the protective effect of telmisartan on hearing loss among patients with hypertension. Front Neurol 2024; 15:1410389. [PMID: 39258156 PMCID: PMC11384575 DOI: 10.3389/fneur.2024.1410389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
Aim Hearing loss, affecting a significant portion of the global population, is prevented with peroxisome proliferator-activated receptor γ agonism. Understanding potential protective treatments is crucial for public health. We examine the effect of telmisartan, an antihypertensive drug and partial peroxisome proliferator-activated receptor γ agonist, on hearing loss in patients with hypertension. Method and results This retrospective cohort analysis used data from the OMOP Common Data Model database, encompassing information from three tertiary institutions in South Korea. The study included a substantial sample size of 860,103 people diagnosed with hypertension. The study included individuals who had been medically diagnosed with hypertension and had been prescribed antihypertensive drugs, including telmisartan. The study design was established to evaluate the comparative effects of telmisartan and other hypertension medications on hearing loss. We used propensity score matching (PSM) to create a balanced cohort, reducing potential biases between the telmisartan and non-telmisartan groups. From the initial 860,103 patients with hypertension, a propensity score matched cohort was derived from 20,010 patients, with 2,193 in the telmisartan group. After PSM, lower incidence of total hearing loss was observed in the telmisartan group compared to the non-telmisartan group during the 3-year follow-up (0.5% vs. 1.5%, log-rank p = 0.005). In subgroup analysis, this study showed consistent results that lower incidence of total hearing loss was higher in the telmisartan group than in the non-telmisartan group. Conclusion Telmisartan was associated with reducing certain types of hearing loss in patients with hypertension. Further research is needed to confirm these findings and understand the mechanisms.
Collapse
Affiliation(s)
- Jung-Joon Cha
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yunjin Yum
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong Hyun Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Eung Ju Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Euyhyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Gi Jung Im
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Hyung Joon Joo
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
- Department of Medical Informatics, Korea University College of Medicine, Seoul, Republic of Korea
- Korea University Research Institute for Medical Bigdata Science, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Li J, Yang J, Xia Y, Wang J, Xia Y. Effects of Astragaloside IV on Hearing, Inflammatory Factors, and Intestinal Flora in Mice Exposed to Noise. Metabolites 2024; 14:122. [PMID: 38393014 PMCID: PMC10890247 DOI: 10.3390/metabo14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Long-term exposure to noise can cause irreversible hearing loss. Considering that there is no effective drug treatment, it is important to seek preventive treatment for noise-induced hearing loss (NIHL). Although astragaloside IV (AS-IV) protects against NIHL by reducing serum inflammatory factors, there is scarce information on the regulation of inflammatory factors by AS-IV to prevent NIHL. We investigated the hearing thresholds and relationship between the serum levels of inflammatory cytokines and intestinal microbiota of c57bl/6j mice exposed to noise (103 dB SPL 4 h·d-1) for 7 days, treated with or without AS-IV. Our results revealed a lower hearing threshold and lower serum levels of TNF-α, TNF-γ, IL-6, IL-1β, and IFN-γ in the mice treated with AS-IV. Additionally, AS-IV increased the abundance levels of the phylum Firmicutes, class Bacillus, order Lactobacillus, and family Lactobacillus (p < 0.05), and decreased those of the phylum Bacteroidetes and order Bacteroidales (p < 0.05). Lactobacillus and Bacilli negatively correlated with TNF-α, TNF-γ, and IL-1β; Erysipelotrichaceae negatively correlated with INF-γ; and Clostridiales positively correlated with IL-1β. In conclusion, AS-IV reduces the elevation of hearing thresholds in mice, preventing hearing loss in mice exposed to noise, and under the intervention of AS-IV, changes in the levels of inflammatory factors correlate with intestinal flora. We suggest that AS-IV improves intestinal flora and reduces inflammation levels in c57bl/6j mice exposed to noise.
Collapse
Affiliation(s)
- Junyi Li
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jian Yang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yun Xia
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yuan Xia
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| |
Collapse
|
3
|
Wu Z, Liang Y, Khan A, He J. Is occupational noise associated with arthritis? Cross-sectional evidence from US population. BMC Public Health 2024; 24:371. [PMID: 38317177 PMCID: PMC10840213 DOI: 10.1186/s12889-024-17897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The impact of occupational noise exposure on various diseases, including ear and cardiovascular diseases, has been studied extensively. Nevertheless, the connection between osteoarthritis (OA) and rheumatoid arthritis (RA) and occupational noise exposure remains largely unexplored in real-world scenarios. This study assessed the association between occupational noise exposure and the prevalence of two types of arthritis. METHODS This study used database data from 2005 to 2012 and 2015-March 2020 from the prepandemic National Health and Nutrition Examination Survey (NHANES) related to occupational noise exposure and arthritis. Multivariate logistic regression analysis was used to estimate the association between occupational noise exposure and RA/OA, adjusting for age, gender, race, education level, marital status, the ratio of family income to poverty, trouble sleeping, smoking status, alcohol consumption, diabetes, hypertension, body mass index (BMI), metabolic equivalents (METs), and thyroid disease. RESULTS This study included 11,053 participants. Multivariate logistic regression analysis demonstrated that previous exposure to occupational noise was positively associated with self-reported RA (OR = 1.43, 95% CI = 1.18-1.73) and OA (OR = 1.25, 95% CI = 1.07-1.46). Compared to individuals without a history of occupational noise exposure, those with an exposure duration of 1 year or greater exhibited higher odds of prevalent RA, though there was no apparent exposure response relationship for noise exposure durations longer than 1 year. The results of our subgroup analyses showed a significant interaction between age and occupational noise exposure on the odds of self-reported prevalent OA. CONCLUSIONS Our findings suggest an association between occupational noise exposure and the prevalence of RA and OA. Nevertheless, further clinical and basic research is warranted to better explore their associations.
Collapse
Affiliation(s)
- Zhounan Wu
- Department of Orthopaedic Surgery, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yuhang Liang
- Department of Orthopaedic Surgery, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ammna Khan
- Department of Orthopaedic Surgery, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410013, China
| | - Jinshen He
- Department of Orthopaedic Surgery, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
4
|
Xu K, Xu B, Gu J, Wang X, Yu D, Chen Y. Intrinsic mechanism and pharmacologic treatments of noise-induced hearing loss. Theranostics 2023; 13:3524-3549. [PMID: 37441605 PMCID: PMC10334830 DOI: 10.7150/thno.83383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Noise accounts for one-third of hearing loss worldwide. Regretfully, noise-induced hearing loss (NIHL) is deemed to be irreversible due to the elusive pathogenic mechanisms that have not been fully elucidated. The complex interaction between genetic and environmental factors, which influences numerous downstream molecular and cellular events, contributes to the NIHL. In clinical settings, there are no effective therapeutic drugs other than steroids, which are the only treatment option for patients with NIHL. Therefore, the need for treatment of NIHL that is currently unmet, along with recent progress in our understanding of the underlying regulatory mechanisms, has led to a lot of new literatures focusing on this therapeutic field. The emergence of novel technologies that modify local drug delivery to the inner ear has led to the development of promising therapeutic approaches, which are currently under clinical investigation. In this comprehensive review, we focus on outlining and analyzing the basics and potential therapeutics of NIHL, as well as the application of biomaterials and nanomedicines in inner ear drug delivery. The objective of this review is to provide an incentive for NIHL's fundamental research and future clinical translation.
Collapse
Affiliation(s)
- Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Li Puma DD, Colussi C, Bandiera B, Puliatti G, Rinaudo M, Cocco S, Paciello F, Re A, Ripoli C, De Chiara G, Bertozzi A, Palamara AT, Piacentini R, Grassi C. Interleukin 1β triggers synaptic and memory deficits in Herpes simplex virus type-1-infected mice by downregulating the expression of synaptic plasticity-related genes via the epigenetic MeCP2/HDAC4 complex. Cell Mol Life Sci 2023; 80:172. [PMID: 37261502 DOI: 10.1007/s00018-023-04817-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Extensive research provides evidence that neuroinflammation underlies numerous brain disorders. However, the molecular mechanisms by which inflammatory mediators determine synaptic and cognitive dysfunction occurring in neurodegenerative diseases (e.g., Alzheimer's disease) are far from being fully understood. Here we investigated the role of interleukin 1β (IL-1β), and the molecular cascade downstream the activation of its receptor, to the synaptic dysfunction occurring in the mouse model of multiple Herpes simplex virus type-1 (HSV-1) reactivations within the brain. These mice are characterized by neuroinflammation and memory deficits associated with a progressive accumulation of neurodegenerative hallmarks (e.g., amyloid-β protein and tau hyperphosphorylation). Here we show that mice undergone two HSV-1 reactivations in the brain exhibited increased levels of IL-1β along with significant alterations of: (1) cognitive performances; (2) hippocampal long-term potentiation; (3) expression synaptic-related genes and pre- and post-synaptic proteins; (4) dendritic spine density and morphology. These effects correlated with activation of the epigenetic repressor MeCP2 that, in association with HDAC4, affected the expression of synaptic plasticity-related genes. Specifically, in response to HSV-1 infection, HDAC4 accumulated in the nucleus and promoted MeCP2 SUMOylation that is a post-translational modification critically affecting the repressive activity of MeCP2. The blockade of IL-1 receptors by the specific antagonist Anakinra prevented the MeCP2 increase and the consequent downregulation of gene expression along with rescuing structural and functional indices of neurodegeneration. Collectively, our findings provide novel mechanistic evidence on the role played by HSV-1-activated IL-1β signaling pathways in synaptic deficits leading to cognitive impairment.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | - Bruno Bandiera
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Giulia Puliatti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Agnese Re
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council (CNR), 00133, Rome, Italy
| | - Alessia Bertozzi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore Di Sanità, 00161, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Cenci Bolognetti Foundation, 00185, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
6
|
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434:108783. [PMID: 37167889 DOI: 10.1016/j.heares.2023.108783] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Otolaryngology - Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
7
|
Pisani A, Paciello F, Montuoro R, Rolesi R, Galli J, Fetoni AR. Antioxidant Therapy as an Effective Strategy against Noise-Induced Hearing Loss: From Experimental Models to Clinic. Life (Basel) 2023; 13:life13041035. [PMID: 37109564 PMCID: PMC10144536 DOI: 10.3390/life13041035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cochlear redox unbalance is the main mechanism of damage involved in the pathogenesis of noise-induced-hearing loss. Indeed, the increased free radical production, in conjunction with a reduced efficacy of the endogenous antioxidant system, plays a key role in cochlear damage induced by noise exposure. For this reason, several studies focused on the possibility to use exogenous antioxidant to prevent or attenuate noise-induce injury. Thus, several antioxidant molecules, alone or in combination with other compounds, have been tested in both experimental and clinical settings. In our findings, we tested the protective effects of several antioxidant enzymes, spanning from organic compounds to natural compounds, such as nutraceuticals of polyphenols. In this review, we summarize and discuss the strengths and weaknesses of antioxidant supplementation focusing on polyphenols, Q-Ter, the soluble form of CoQ10, Vitamin E and N-acetil-cysteine, which showed great otoprotective effects in different animal models of noise induced hearing loss and which has been proposed in clinical trials.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Raffaele Montuoro
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Rolando Rolesi
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Jacopo Galli
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
8
|
Paciello F, Ripoli C, Fetoni AR, Grassi C. Redox Imbalance as a Common Pathogenic Factor Linking Hearing Loss and Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12020332. [PMID: 36829891 PMCID: PMC9952092 DOI: 10.3390/antiox12020332] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Experimental and clinical data suggest a tight link between hearing and cognitive functions under both physiological and pathological conditions. Indeed, hearing perception requires high-level cognitive processes, and its alterations have been considered a risk factor for cognitive decline. Thus, identifying common pathogenic determinants of hearing loss and neurodegenerative disease is challenging. Here, we focused on redox status imbalance as a possible common pathological mechanism linking hearing and cognitive dysfunctions. Oxidative stress plays a critical role in cochlear damage occurring during aging, as well as in that induced by exogenous factors, including noise. At the same time, increased oxidative stress in medio-temporal brain regions, including the hippocampus, is a hallmark of neurodegenerative disorders like Alzheimer's disease. As such, antioxidant therapy seems to be a promising approach to prevent and/or counteract both sensory and cognitive neurodegeneration. Here, we review experimental evidence suggesting that redox imbalance is a key pathogenetic factor underlying the association between sensorineural hearing loss and neurodegenerative diseases. A greater understanding of the pathophysiological mechanisms shared by these two diseased conditions will hopefully provide relevant information to develop innovative and effective therapeutic strategies.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-0630154966
| | - Anna Rita Fetoni
- Unit of Audiology, Department of Neuroscience, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Paciello F, Zorzi V, Raspa M, Scavizzi F, Grassi C, Mammano F, Fetoni AR. Connexin 30 deletion exacerbates cochlear senescence and age-related hearing loss. Front Cell Dev Biol 2022; 10:950837. [PMID: 36016655 PMCID: PMC9395607 DOI: 10.3389/fcell.2022.950837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic mutations in the Gjb2 and Gjb6 genes, encoding connexin 26 (Cx26) and connexin 30 (Cx30), respectively, have been linked to the most frequent monogenic hearing impairment, nonsyndromic hearing loss, and deafness DFNB1. It is known that Cx26 plays an important role in auditory development, while the role of Cx30 in hearing remains controversial. Previous studies found that partial deletion of Cx26 can accelerate age-related hearing loss (ARHL), a multifactorial complex disorder, with both environmental and genetic factors contributing to the etiology of the disease. Here, we investigated the role of Cx30 in cochlear-aging processes using a transgenic mouse model with total deletion of Cx30 (Cx30 ΔΔ mice), in which Cx30 was removed without perturbing the surrounding sequences. We show that these mice are affected by exacerbated ARHL, with increased morphological cochlear damage, oxidative stress, inflammation, and vascular dysfunctions. Overall, our data demonstrate that Cx30 deletion can be considered a genetic risk factor for ARHL, making cochlear structures more susceptible to aging processes.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | | | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
- Department of Physics and Astronomy, University of Padova, Padova, Italy
- *Correspondence: Fabio Mammano, ; Anna Rita Fetoni,
| | - Anna Rita Fetoni
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Unit of Audiology, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- *Correspondence: Fabio Mammano, ; Anna Rita Fetoni,
| |
Collapse
|
10
|
Han JS, Kim YL, Yu HJ, Park JM, Kim Y, Park SY, Park SN. Safety and Efficacy of Intratympanic Alpha-Lipoic Acid Injection in a Mouse Model of Noise-Induced Hearing Loss. Antioxidants (Basel) 2022; 11:antiox11081423. [PMID: 35892625 PMCID: PMC9331721 DOI: 10.3390/antiox11081423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Alpha-lipoic acid (ALA) is an antioxidant with oto-protective effects. In the present study, the safety and effectiveness of ALA therapy after noise-induced hearing loss was confirmed based on the administration method. The safety of intratympanic ALA (IT-ALA) was evaluated with oto-endoscopy and middle ear mucosa morphologic study. Perilymph ALA concentrations according to the administration routes were compared, and the efficacy of ALA was investigated through hearing tests and cochlear histological studies. The middle ear mucosa was swollen 1 week after IT-ALA but completely recovered within 3 weeks. ALA concentration in the perilymph was significantly higher in the IT-ALA group. Recovery of organ of Corti morphology and hearing levels were predominant in the IT-ALA group compared with the intraperitoneal injection group (IP-ALA) and showed similar rescue effects in the IT-dexamethasone group (IT-DEX). Interleukin-1 beta and nuclear factor-kappa B expression was significantly downregulated in the IT-ALA group. IT-ALA showed better cochlear recovery from acoustic trauma with higher inner ear penetration rate than IP-ALA. The rescue effect of IT-ALA after noise-induced hearing loss was similar to IT-DEX; however, the ALA and DEX mechanisms are different. IT-ALA appears to be another safe and effective treatment modality after acoustic trauma and comparable to IT-DEX.
Collapse
Affiliation(s)
- Jae Sang Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (J.S.H.); (Y.K.)
| | - Ye Lin Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (Y.L.K.); (H.J.Y.)
| | - Hyo Jeong Yu
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (Y.L.K.); (H.J.Y.)
| | - Jung Mee Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Gangneung Asan Hospital, College of Medicine University of Ulsan, 38 Bangdong-gil, Sacheon-myeon, Gangneung-si 25440, Korea;
| | - Yeonji Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (J.S.H.); (Y.K.)
| | - So Young Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Shi Nae Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (J.S.H.); (Y.K.)
- Correspondence: ; Tel.: +82-2-2258-6215; Fax: +82-2-595-1354
| |
Collapse
|
11
|
Blebea CM, Ujvary LP, Necula V, Dindelegan MG, Perde-Schrepler M, Stamate MC, Cosgarea M, Maniu AA. Current Concepts and Future Trends in Increasing the Benefits of Cochlear Implantation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:747. [PMID: 35744010 PMCID: PMC9229893 DOI: 10.3390/medicina58060747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 01/29/2023]
Abstract
Hearing loss is the most common neurosensory disorder, and with the constant increase in etiological factors, combined with early detection protocols, numbers will continue to rise. Cochlear implantation has become the gold standard for patients with severe hearing loss, and interest has shifted from implantation principles to the preservation of residual hearing following the procedure itself. As the audiological criteria for cochlear implant eligibility have expanded to include patients with good residual hearing, more attention is focused on complementary development of otoprotective agents, electrode design, and surgical approaches. The focus of this review is current aspects of preserving residual hearing through a summary of recent trends regarding surgical and pharmacological fundamentals. Subsequently, the assessment of new pharmacological options, novel bioactive molecules (neurotrophins, growth factors, etc.), nanoparticles, stem cells, and gene therapy are discussed.
Collapse
Affiliation(s)
- Cristina Maria Blebea
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Laszlo Peter Ujvary
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Violeta Necula
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
- County Clinical Emergency Hospital Cluj, 400347 Cluj Napoca, Romania
| | - Maximilian George Dindelegan
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | | | - Mirela Cristina Stamate
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Marcel Cosgarea
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Alma Aurelia Maniu
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
- County Clinical Emergency Hospital Cluj, 400347 Cluj Napoca, Romania
| |
Collapse
|