1
|
Mbogho Abogo J, Sima Obiang C, Begouabe H, Ngoua Meye Misso RL, Orango Bourdette JO, Ndong Atome GR, Obame Engonga LC, Ondo JP. Evaluation of the efficacy of medicinal plants based on immunological biomarkers in the treatment of bacterial infections: Current status and future directions. GENE REPORTS 2024; 37:102052. [DOI: 10.1016/j.genrep.2024.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Frumuzachi O, Rohn S, Mocan A. Fermented black chokeberry (Aronia melanocarpa (Michx.) Elliott) products - A systematic review on the composition and current scientific evidence of possible health benefits. Food Res Int 2024; 196:115094. [PMID: 39614570 DOI: 10.1016/j.foodres.2024.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Black chokeberry (Aronia melanocarpa (Michx.) Elliott) is recognized for its potential health benefits, largely attributed to its high phenolic content. However, many phenolic compounds possess a low bioavailability, potentially limiting their beneficial effects. Fermentation of chokeberry has been proposed as a method to improve bioavailability, bioactive composition, sensory qualities, and nutritional value. This systematic review provides an overview of fermented chokeberry products, including compound composition, sensory attributes, and health benefits observed in in vivo and in vitro studies. While sensory evaluations highlighted diverse flavour profiles and acceptability, human intervention studies suggested potential benefits for glucose-dependent insulinotropic peptide increase. Animal models indicated anti-obesity and immunomodulatory properties, while in vitro studies demonstrate antioxidant, anti-melanogenesis, and anti-diabetic effects. Despite some promising findings in human and animal trials, challenges such as participant adherence and dosing inconsistencies force further protocol improvements. Through continuous scientific research, fermented chokeberry products may emerge as functional foods contributing to human health.
Collapse
Affiliation(s)
- Oleg Frumuzachi
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania.
| | - Sascha Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Icer MA, Sarikaya B, Kocyigit E, Atabilen B, Çelik MN, Capasso R, Ağagündüz D, Budán F. Contributions of Gamma-Aminobutyric Acid (GABA) Produced by Lactic Acid Bacteria on Food Quality and Human Health: Current Applications and Future Prospects. Foods 2024; 13:2437. [PMID: 39123629 PMCID: PMC11311711 DOI: 10.3390/foods13152437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The need to increase food safety and improve human health has led to a worldwide increase in interest in gamma-aminobutyric acid (GABA), produced by lactic acid bacteria (LABs). GABA, produced from glutamic acid in a reaction catalyzed by glutamate decarboxylase (GAD), is a four-carbon, non-protein amino acid that is increasingly used in the food industry to improve the safety/quality of foods. In addition to the possible positive effects of GABA, called a postbiotic, on neuroprotection, improving sleep quality, alleviating depression and relieving pain, the various health benefits of GABA-enriched foods such as antidiabetic, antihypertension, and anti-inflammatory effects are also being investigated. For all these reasons, it is not surprising that efforts to identify LAB strains with a high GABA productivity and to increase GABA production from LABs through genetic engineering to increase GABA yield are accelerating. However, GABA's contributions to food safety/quality and human health have not yet been fully discussed in the literature. Therefore, this current review highlights the synthesis and food applications of GABA produced from LABs, discusses its health benefits such as, for example, alleviating drug withdrawal syndromes and regulating obesity and overeating. Still, other potential food and drug interactions (among others) remain unanswered questions to be elucidated in the future. Hence, this review paves the way toward further studies.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Buse Sarikaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, Ordu 52000, Turkey;
| | - Büşra Atabilen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, Karaman 70100, Turkey;
| | - Menşure Nur Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun 55000, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
4
|
Szumny D, Kucharska AZ, Czajor K, Bernacka K, Ziółkowska S, Krzyżanowska-Berkowska P, Magdalan J, Misiuk-Hojło M, Sozański T, Szeląg A. Extract from Aronia melanocarpa, Lonicera caerulea, and Vaccinium myrtillus Improves near Visual Acuity in People with Presbyopia. Nutrients 2024; 16:926. [PMID: 38612968 PMCID: PMC11013737 DOI: 10.3390/nu16070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Presbyopia is a global problem with an estimated 1.3 billion patients worldwide. In the area of functional food applications, dietary supplements or herbs, there are very few reports describing the positive effects of their use. In the available literature, there is a lack of studies in humans as well as on an animal model of extracts containing, simultaneously, compounds from the polyphenol group (in particular, anthocyanins) and iridoids, so we undertook a study of the effects of a preparation composed of these compounds on a condition of the organ of vision. Our previous experience on a rabbit model proved the positive effect of taking an oral extract of Cornus mas in stabilizing the intraocular pressure of the eye. The purpose of this study was to evaluate the effect of an orally administered ternary compound preparation on the status of physiological parameters of the ocular organ. The preparation contained an extract of the chokeberry Aronia melanocarpa, the honeysuckle berry Lonicera caerulea L., and the bilberry Vaccinium myrtillus (hereafter AKB) standardized for anthocyanins and iridoids, as bioactive compounds known from the literature. A randomized, double-blind, cross-over study lasting with a "wash-out" period of 17 weeks evaluated a group of 23 people over the age of 50, who were subjects with presbyopia and burdened by prolonged work in front of screen monitors. The group of volunteers was recruited from people who perform white-collar jobs on a daily basis. The effects of the test substances contained in the preparation on visual acuity for distance and near, sense of contrast for distance and near, intraocular pressure, and conjunctival lubrication, tested by Schirmer test, LIPCOF index and TBUT test, and visual field test were evaluated. Anthocyanins (including cyanidin 3-O-galactoside, delphinidin 3-O-arabinoside, cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, cyanidin 3-O-arabinoside) and iridoids (including loganin, sweroside, loganic acid) were identified as substances present in the extract obtained by HPLC-MS. The preliminary results showed that the composition of AKB applied orally does not change visual acuity in the first 6 weeks of administration. Only in the next cycle of the study was an improvement in near visual acuity observed in 92.3% of the patients. This may indicate potential to correct near vision in presbyopic patients. On the other hand, an improvement in conjunctival wetting was observed in the Schirmer test at the beginning of week 6 of administration in 80% of patients. This effect was weakened in subsequent weeks of conducting the experiment to 61.5%. The improvement in conjunctival hydration in the Schirmer test shows the potential beneficial effect of the AKB formulation in a group of patients with dry eye syndrome. This is the first study of a preparation based on natural, standardized extracts of chokeberry, honeysuckle berry, and bilberry. Preliminary studies show an improvement in near visual acuity and conjunctival hydration on the Schirmer test, but this needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Dorota Szumny
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (J.M.); (A.S.)
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
| | - Alicja Zofia Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (A.Z.K.); (K.B.)
| | - Karolina Czajor
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Karolina Bernacka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (A.Z.K.); (K.B.)
| | - Sabina Ziółkowska
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
| | - Patrycja Krzyżanowska-Berkowska
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Jan Magdalan
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (J.M.); (A.S.)
| | - Marta Misiuk-Hojło
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (J.M.); (A.S.)
| |
Collapse
|
5
|
Oliveira MEAS, Ribeiro da Silva Lima L, Santos MCB, Ferrari Fonseca de Sales N, Ferreira RM, Cameron LC, Filho JMC, Bassinello PZ, Wanderlei Piler de Carvalho C, Ferreira MSL, Takeiti CY. Role of short germination and milling on physical properties, amino acid and metabolomic profiles of high amylose rice fractions. Food Res Int 2023; 174:113556. [PMID: 37986434 DOI: 10.1016/j.foodres.2023.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
Short germination is a process that can improve bioactive compounds in rice. This work aimed investigate the physical properties, phenolic compounds (PC), antioxidant activity and amino acids composition of husk + bran, brown and milled rice with high amylose content after short germination (16 h). α-amylase activity (Falling Number, FN) and enthalpy (ΔH) were unchanged (p < 0.05). RVA curve profiles were similar, even though after short germination and milling. Globally, metabolomics analysis identified 117 PC, in which 111 (bound), 104 (free) and 21 revealed in both extracts. p-Coumaric, trans-ferulic and ferulic acids were the most abundant PC revealed in all fractions. The portion husk + bran showed the highest level of total antioxidant activity (709.90 µmol TE) in both free and bound fractions. In terms of total amino acids, there was no statistical difference (p < 0.05) among non-germinated and germinated samples, contrary to free amino acids content. Glutamic acid (Glu) presented the highest values combining short germination and milling (1725-1900 mg/100 g) consequently, leads to higher value of GABA (12.21 mg/100 g). The combination of short germination and milling demonstrated a good strategy to improve the nutritional quality of rice, unless the thermal and pasting properties have been altered, contribute to potential health benefits on human nutrition.
Collapse
Affiliation(s)
| | - Luciana Ribeiro da Silva Lima
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil; Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | - Millena Cristina Barros Santos
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil; Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | | | - Renata Marenda Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | - Luiz Claudio Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil
| | | | | | | | - Mariana Simões Larraz Ferreira
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil; Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | - Cristina Yoshie Takeiti
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Hwang IC, Valeriano VD, Song JH, Pereira M, Oh JK, Han K, Engstrand L, Kang DK. Mucosal immunization with lactiplantibacillus plantarum-displaying recombinant SARS-CoV-2 epitopes on the surface induces humoral and mucosal immune responses in mice. Microb Cell Fact 2023; 22:96. [PMID: 37161468 PMCID: PMC10169176 DOI: 10.1186/s12934-023-02100-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The use of probiotic lactic acid bacteria as a mucosal vaccine vector is considered a promising alternative compared to the use of other microorganisms because of its "Generally Regarded as Safe" status, its potential adjuvant properties, and its tolerogenicity to the host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), is highly transmissible and pathogenic. This study aimed to determine the potential of Lactiplantibacillus plantarum expressing SARS-CoV-2 epitopes as a mucosal vaccine against SARS-CoV-2. RESULTS In this study, the possible antigenic determinants of the spike (S1-1, S1-2, S1-3, and S1-4), membrane (ME1 and ME2), and envelope (E) proteins of SARS-CoV-2 were predicted, and recombinant L. plantarum strains surface-displaying these epitopes were constructed. Subsequently, the immune responses induced by these recombinant strains were compared in vitro and in vivo. Most surface-displayed epitopes induced pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α and interleukin (IL)-6] and anti-inflammatory cytokines (IL-10) in lipopolysaccharide-induced RAW 264.7, with the highest anti-inflammatory to pro-inflammatory cytokine ratio in the S1-1 and S1-2 groups, followed by that in the S1-3 group. When orally administered of recombinant L. plantarum expressing SARS-CoV-2 epitopes in mice, all epitopes most increased the expression of IL-4, along with induced levels of TNF-α, interferon-gamma, and IL-10, specifically in spike protein groups. Thus, the surface expression of epitopes from the spike S1 protein in L. plantarum showed potential immunoregulatory effects, suggesting its ability to potentially circumvent hyperinflammatory states relevant to monocyte/macrophage cell activation. At 35 days post immunization (dpi), serum IgG levels showed a marked increase in the S1-1, S1-2, and S1-3 groups. Fecal IgA levels increased significantly from 21 dpi in all the antigen groups, but the boosting effect after 35 dpi was explicitly observed in the S1-1, S1-2, and S1-3 groups. Thus, the oral administration of SARS-CoV-2 antigens into mice induced significant humoral and mucosal immune responses. CONCLUSION This study suggests that L. plantarum is a potential vector that can effectively deliver SARS-CoV-2 epitopes to intestinal mucosal sites and could serve as a novel approach for SARS-CoV-2 mucosal vaccine development.
Collapse
Affiliation(s)
- In-Chan Hwang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Ji Hoon Song
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Marcela Pereira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Ju Kyoung Oh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
7
|
Hou D, Tang J, Feng Q, Niu Z, Shen Q, Wang L, Zhou S. Gamma-aminobutyric acid (GABA): a comprehensive review of dietary sources, enrichment technologies, processing effects, health benefits, and its applications. Crit Rev Food Sci Nutr 2023; 64:8852-8874. [PMID: 37096548 DOI: 10.1080/10408398.2023.2204373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a naturally occurring potential bioactive compound present in plants, microorganisms, animals, and humans. Especially, as a main inhibitory neurotransmitter in the central nervous system, GABA possesses a broad spectrum of promising bioactivities. Thus, functional foods enriched with GABA have been widely sought after by consumers. However, the GABA levels in natural foods are usually low, which cannot meet people's demand for health effects. With the increasing public awareness on the food securities and naturally occurring processes, using enrichment technologies to elevate the GABA contents in foods instead of exogenous addition can enhance the acceptability of health-conscious consumers. Herein, this review provides a comprehensive insight on the dietary sources, enrichment technologies, processing effects of GABA, and its applications in food industry. Furthermore, the various health benefits of GABA-enriched foods, mainly including neuroprotection, anti-insomnia, anti-depression, anti-hypertensive, anti-diabetes, and anti-inflammatory are also summarized. The main challenges for future research on GABA are related to exploring high GABA producing strains, enhancing the stability of GABA during storage, and developing emerging enrichment technologies without affecting food quality and other active ingredients. A better understanding of GABA may introduce new windows for its application in developing functional foods.
Collapse
Affiliation(s)
- Dianzhi Hou
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Jian Tang
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Qiqian Feng
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zhitao Niu
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, Beijing, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sumei Zhou
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
8
|
Redox Remodeling by Nutraceuticals for Prevention and Treatment of Acute and Chronic Inflammation. Antioxidants (Basel) 2023; 12:antiox12010132. [PMID: 36670995 PMCID: PMC9855137 DOI: 10.3390/antiox12010132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Antioxidant-rich dietary regimens are considered the best practice to maintain health, control inflammation, and prevent inflammatory diseases. Yet, nutraceuticals as food supplements are self-prescribed and purchasable over the counter by healthy individuals for the purpose of beneficial effects on fitness and aging. Hence, the effectiveness, safety, and correct intake of these compounds need to be better explored. Since redox-modulating activity of these compounds appears to be involved in activation and or suppression of immune cells, the preventive use of nutraceuticals is very attractive even for healthy people. This review focuses on redox- and immunomodulating nutraceuticals in the context of diabetes mellitus (DM). In fact, DM is an illustrative disease of latent and predictable inflammatory pathogenetic processes set out and sustained by oxidative stress. DM has been thoroughly investigated through in vitro and in vivo models. Furthermore, human DM is characterized by uncontrolled levels of glucose, a pivotal factor shaping immune responses. Hence, antioxidant nutraceuticals with multifaced activities, including glucose keeping, are described here. A greater number of such multi-player nutraceuticals might be identified using DM animal models and validated in clinical settings on genetic and environmental high-risk individuals.
Collapse
|
9
|
Ali S, Birhanu BT, Lee EB, Quah Y, Boby N, Suk K, Lee SP, Lee SJ, Park SC. Immunomodulatory effects of Bacillus subtilis-fermented soybean extract in mice. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2124265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sekendar Ali
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Bangladesh
| | - Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Yixian Quah
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Naila Boby
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Sam-Pin Lee
- Department of Food Science and Technology, Keimyung University, Daegu, South Korea
| | - Seung-Jin Lee
- Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
10
|
Chokeberry (Aronia melanocarpa) fruit extract abrogates melanoma progression through boosting up IFN-γ-producing cells. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|