1
|
Gao H, Jiang H. Current status and controversies in the treatment of neonatal hypoxic-ischemic encephalopathy: A review. Medicine (Baltimore) 2024; 103:e38993. [PMID: 39093737 PMCID: PMC11296446 DOI: 10.1097/md.0000000000038993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a type of traumatic brain injury caused by insufficient cerebral perfusion and oxygen supply in the perinatal neonate, which can be accompanied by different types of long-term neurodevelopmental sequelae, such as cerebral palsy, learning disabilities, mental retardation and epilepsy It is one of the main causes of neonatal death and disability, and it has caused a great burden on families and society. Therefore, this article mainly reviews the latest developments in mild hypothermia therapy and related drugs for neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
| | - Hong Jiang
- Department of Neonatology, Yanan University Affiliated Hospital, Shaanxi, Yan’an, China
| |
Collapse
|
2
|
Yang M, Wang K, Liu B, Shen Y, Liu G. Hypoxic-Ischemic Encephalopathy: Pathogenesis and Promising Therapies. Mol Neurobiol 2024:10.1007/s12035-024-04398-9. [PMID: 39073530 DOI: 10.1007/s12035-024-04398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain lesion caused by inadequate blood supply and oxygen deprivation, often occurring in neonates. It has emerged as a grave complication of neonatal asphyxia, leading to chronic neurological damage. Nevertheless, the precise pathophysiological mechanisms underlying HIE are not entirely understood. This paper aims to comprehensively elucidate the contributions of hypoxia-ischemia, reperfusion injury, inflammation, oxidative stress, mitochondrial dysfunction, excitotoxicity, ferroptosis, endoplasmic reticulum stress, and apoptosis to the onset and progression of HIE. Currently, hypothermia therapy stands as the sole standard treatment for neonatal HIE, albeit providing only partial neuroprotection. Drug therapy and stem cell therapy have been explored in the treatment of HIE, exhibiting certain neuroprotective effects. Employing drug therapy or stem cell therapy as adjunctive treatments to hypothermia therapy holds great significance. This article presents a systematic review of the pathogenesis and treatment strategies of HIE, with the goal of enhancing the effect of treatment and improving the quality of life for HIE patients.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Guangliang Liu
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
3
|
Jenkins DD, Garner SS, Brennan A, Morris J, Bonham K, Adams L, Hunt S, Moss H, Badran BW, George MS, Wiest DB. Transcutaneous auricular vagus nerve stimulation may benefit from the addition of N-acetylcysteine to facilitate motor learning in infants of diabetic mothers failing oral feeds. Front Hum Neurosci 2024; 18:1373543. [PMID: 38841121 PMCID: PMC11151742 DOI: 10.3389/fnhum.2024.1373543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Objective This study aims to determine if pretreating with enteral N-acetylcysteine (NAC) improves CNS oxidative stress and facilitates improvement in oromotor skills during transcutaneous auricular nerve stimulation (taVNS) paired with oral feedings in infants of diabetic mothers (IDMs) who are failing oral feeds. Methods We treated 10 IDMs who were gastrostomy tube candidates in an open-label trial of NAC and taVNS paired with oral feeding. NAC (75 or 100 mg/kg/dose) was given by nasogastric (NG) administration every 6 h for 4 days, then combined with taVNS paired with 2 daily feeds for another 14 days. NAC pharmacokinetic (PK) parameters were determined from plasma concentrations at baseline and at steady state on day 4 of treatment in conjunction with magnetic resonance spectroscopic (MRS) quantification of CNS glutathione (GSH) as a marker of oxidative stress. We compared increases in oral feeding volumes before and during taVNS treatment and with a prior cohort of 12 IDMs who largely failed to achieve full oral feeds with taVNS alone. Results NAC 100 mg/kg/dose every 6 h NG resulted in plasma [NAC] that increased [GSH] in the basal ganglia with a mean of 0.13 ± 0.08 mM (p = 0.01, compared to baseline). Mean daily feeding volumes increased over 14 days of NAC + taVNS compared to the 14 days before treatment and compared to the prior cohort of 12 IDMs treated with taVNS alone. Seven IDMs reached full oral feeds sufficient for discharge, while three continued to have inadequate intake. Conclusion In IDM failing oral feeds, NAC 100 mg/kg/dose every 6 h NG for 4 days before and during taVNS paired with oral feeding increased CNS GSH, potentially mitigating oxidative stress, and was associated with improving functional feeding outcomes compared to taVNS alone in a prior cohort. This represents a novel approach to neuromodulation and supports the concept that mitigation of ongoing oxidative stress may increase response to taVNS paired with a motor task.
Collapse
Affiliation(s)
- Dorothea D. Jenkins
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Sandra S. Garner
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| | - Alyssa Brennan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Jessica Morris
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Kate Bonham
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Lauren Adams
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, United States
| | - Sally Hunt
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Hunter Moss
- Department of Neuroscience and the Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States
| | - Bashar W. Badran
- Neuro-X Lab, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Mark S. George
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Donald B. Wiest
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
4
|
Kromm GH, Patankar H, Nagalotimath S, Wong H, Austin T. Socioemotional and Psychological Outcomes of Hypoxic-Ischemic Encephalopathy: A Systematic Review. Pediatrics 2024; 153:e2023063399. [PMID: 38440801 PMCID: PMC10979301 DOI: 10.1542/peds.2023-063399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Therapeutic hypothermia has reduced the risk of death or major disability following perinatal hypoxic-ischemic encephalopathy (HIE); however, many children who experience perinatal HIE still go on to develop personal and behavioral challenges, which can be difficult for caregivers and a public health burden for society. Our objective with this review is to systematically identify and synthesize studies that evaluate associations between perinatal HIE and socioemotional or psychological outcomes. METHODS We screened all search-returned journal articles from Cochrane Library, Embase, Medline, PsycINFO, Scopus, and Web of Science from data inception through February 1, 2023. Keywords related to HIE (eg, neonatal encephalopathy, neonatal brain injury) and outcomes (eg, social*, emotion*, behav* problem, psycholog*, psychiatr*) were searched with a predefined search string. We included all observational human studies reporting socioemotional or psychological sequelae of term HIE. Study data were recorded on standardized sheets, and the Newcastle-Ottawa Scale was adapted to assess study quality. RESULTS We included 43 studies documenting 3244 HIE participants and 2132 comparison participants. We found statistically significant associations between HIE and social and emotional, behavioral, and psychological and psychiatric deficits throughout infancy, childhood, and adolescence (19 studies). The authors of the included studies also report nonsignificant findings (11 studies) and outcomes without statistical comparison (25 studies). CONCLUSIONS Perinatal HIE may be a risk factor for a range of socioemotional and psychological challenges in the short- and long-term. Routine screening, early intervention, and follow-up support may be particularly beneficial to this population.
Collapse
Affiliation(s)
| | | | | | - Hilary Wong
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- NICU, Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- NICU, Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
5
|
N-Acetylcysteine Administration Attenuates Sensorimotor Impairments Following Neonatal Hypoxic-Ischemic Brain Injury in Rats. Int J Mol Sci 2022; 23:ijms232416175. [PMID: 36555816 PMCID: PMC9783020 DOI: 10.3390/ijms232416175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxic ischemic (HI) brain injury that occurs during neonatal period has been correlated with severe neuronal damage, behavioral deficits and infant mortality. Previous evidence indicates that N-acetylcysteine (NAC), a compound with antioxidant action, exerts a potential neuroprotective effect in various neurological disorders including injury induced by brain ischemia. The aim of the present study was to investigate the role of NAC as a potential therapeutic agent in a rat model of neonatal HI brain injury and explore its long-term behavioral effects. To this end, NAC (50 mg/kg/dose, i.p.) was administered prior to and instantly after HI, in order to evaluate hippocampal and cerebral cortex damage as well as long-term functional outcome. Immunohistochemistry was used to detect inducible nitric oxide synthase (iNOS) expression. The results revealed that NAC significantly alleviated sensorimotor deficits and this effect was maintained up to adulthood. These improvements in functional outcome were associated with a significant decrease in the severity of brain damage. Moreover, NAC decreased the short-term expression of iNOS, a finding implying that iNOS activity may be suppressed and that through this action NAC may exert its therapeutic action against neonatal HI brain injury.
Collapse
|
6
|
Kuligowski J, Vento M. Metabolomics, Oxidative, and Nitrosative Stress in the Perinatal Period. Antioxidants (Basel) 2022; 11:antiox11071357. [PMID: 35883848 PMCID: PMC9311970 DOI: 10.3390/antiox11071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
The perinatal period is extremely sensitive to external stimuli, and events that may disturb the equilibrium within the mother–infant dyad might have a substantial short- and long-term impact on the infant’s health and development [...]
Collapse
Affiliation(s)
- Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe (IISLaFe), 46026 Valencia, Spain;
- Correspondence: ; Tel.: +34-961-246-661
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe (IISLaFe), 46026 Valencia, Spain;
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
| |
Collapse
|
7
|
Ferroptosis: A Promising Therapeutic Target for Neonatal Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2022; 23:ijms23137420. [PMID: 35806425 PMCID: PMC9267109 DOI: 10.3390/ijms23137420] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a type of programmed cell death caused by phospholipid peroxidation that has been implicated as a mechanism in several diseases resulting from ischemic-reperfusion injury. Most recently, ferroptosis has been identified as a possible key injury mechanism in neonatal hypoxic-ischemic brain injury (HIBI). This review summarizes the current literature regarding the different ferroptotic pathways, how they may be activated after neonatal HIBI, and which current or investigative interventions may attenuate ferroptotic cell death associated with neonatal HIBI.
Collapse
|