1
|
Krogstad KC, Fehn JF, Mamedova LK, Bernard MP, Bradford BJ. Effects of rumen-protected niacin on inflammatory response to repeated intramammary lipopolysaccharide challenges. J Dairy Sci 2024:S0022-0302(24)00927-5. [PMID: 38876216 DOI: 10.3168/jds.2024-24974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
Nutritional strategies that improve an animal's resilience to various challenges may improve animal health and welfare. One such nutrient is niacin which has reduced inflammation in mice, humans, and swine; however, niacin's anti-inflammatory effects have not been investigated in cattle. Our objective was to determine whether rumen-protected niacin (RPN) alters lactating dairy cows' inflammatory response to intramammary lipopolysaccharide (LPS) challenges, whether RPN resulted in any carry-over effects, and whether repeated LPS challenges result in signs of immune tolerance or innate immune training. Twenty healthy, late-lactation Holstein cows (232 ± 65 d in milk; 39 ± 5.8 kg/d of milk) were enrolled in a randomized complete block experiment which lasted 70 d. Cows received 26 g/d of RPN or no top-dress (CON) for the first 42 d of the experiment. During the final milking of d 27 and 55, cows were challenged in their rear-right mammary gland (RR) with 100 µg of LPS suspended in 5 mL of phosphate buffered saline. Milk yield, milk conductivity, and feed intake were measured daily. Milk composition was measured on d 14, 23, 24, 30, 37, 45, and 52. Blood samples were collected at 0, 8, 12, 24, 48, 72, 96, and 120 h after each LPS challenge, whereas RR quarter milk samples were collected at 0, 8, 16, 24, 48, 72, 96, 120, 144, and 168 h after each LPS challenge. Body temperature was measured continuously during each challenge with an intravaginal thermometer. Linear mixed models with repeated measures were used to analyze the results. Before LPS challenge, RPN did not affect feed intake or milk production, but it reduced SCS (1.24 ± 0.41 vs. 0.05 ± 0.45). After challenge, RPN did not affect feed intake, milk production, milk composition, SCS, body temperature, plasma glucose, or plasma insulin concentrations. Our results suggest RPN reduced peak plasma haptoglobin and lipopolysaccharide binding protein (LBP) during the 1st LPS challenge. Plasma haptoglobin tended to be less after the 2nd challenge for cows previously supplemented RPN while LBP was similar for each treatment group after the 2nd challenge. The 2nd LPS challenge resulted in decreased plasma haptoglobin compared with the 1st LPS challenge, suggestive of tolerance but it also induced a greater peak SCS than the 1st LPS challenge. Our results suggest that repeated LPS challenges promote a systemic tolerance but heightened local response to LPS-induced mastitis. Feeding RPN reduced SCS before challenge and reduced plasma acute phase proteins after challenge suggesting that RPN may reduce systemic inflammation without altering the local inflammatory responses.
Collapse
Affiliation(s)
- K C Krogstad
- Department of Animal Science, Michigan State University, East Lansing 48824; Department of Animal Science, The Ohio State University, Wooster, OH 44691 USA.
| | - J F Fehn
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - L K Mamedova
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - M P Bernard
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, 48824 USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824 USA
| | - B J Bradford
- Department of Animal Science, Michigan State University, East Lansing 48824
| |
Collapse
|
2
|
Irawan A, Puerto-Hernandez GM, Ford HR, Busato S, Ates S, Cruickshank J, Ranches J, Estill CT, Trevisi E, Bionaz M. Feeding spent hemp biomass to lactating dairy cows: Effects on performance, milk components and quality, blood parameters, and nitrogen metabolism. J Dairy Sci 2024; 107:258-277. [PMID: 37690708 DOI: 10.3168/jds.2023-23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Abstract
The legalization of industrial hemp by the 2018 Farm Bill in the United States has driven a sharp increase in its cultivation, including for cannabinoid extraction. Spent hemp biomass (SHB), produced from the extraction of cannabinoids, can potentially be used as feed for dairy cows; however, it is still illegal to do so in the United States, according to the US Food and Drug Administration Center for Veterinary Medicine, due to the presence of cannabinoids and the lack of data on the effect on animals. To assess the safety of this byproduct as feed for dairy cows, late-lactation Jersey cows (245 ± 37 d in milk; 483 ± 38 kg body weight; 10 multiparous and 8 primiparous) received a basal total mixed ration (TMR) diet plus 13% alfalfa pellet (CON) or 13% pelleted SHB for 4 wk (intervention period [IP]) followed by 4 wk of withdrawal period (WP), where all cows received only the basal TMR during WP. The dry matter intake (DMI), body weight, body condition score, milk yield, milk components, and fatty acid profile, blood parameters, N metabolism, methane emission, and activity were measured. Results indicated that feeding SHB decreased DMI mainly due to the low palatability of the SHB pellet, as the cows consumed only 7.4% of the total TMR with 13.0% SHB pellet offered in the ration. However, milk yield was not affected during the IP and was higher than CON during the WP, leading to higher milk yield/DMI. Milk components were not affected, except for a tendency in decreased fat percentage. Milk fat produced by cows fed SHB had a higher proportion of oleate and bacteria-derived fatty acids than CON. The activity of the cows was not affected, except for a shorter overall lying time in SHB versus CON cows during the IP. Blood parameters related to immune function were not affected. Compared with CON, cows fed SHB had a lower cholesterol concentration during the whole experiment and higher β-hydroxybutyric acid during the WP, while a likely low-grade inflammation during the IP was indicated by higher ceruloplasmin and reactive oxidative metabolites. Other parameters related to liver health and inflammatory response were unaffected, except for a tendency for higher activity of alkaline phosphatase during IP and a lower activity of gamma-glutamyl transferase during WP in the SHB group versus CON. The bilirubin concentration was increased in cows fed SHB, suggesting a possible decrease in the clearance ability of the liver. Digestibility of the dry matter and protein and methane emission were not affected by feeding SHB. The urea, purine derivatives, and creatinine concentration in urine was unaffected, but cows fed SHB had higher N use efficiency and lower urine volume. Altogether, our data revealed a relatively low palatability of SHB affecting DMI with minimal biological effects, except for a likely low-grade inflammation, a higher N use efficiency, and a possible decrease in liver clearance. Overall, the data support the use of SHB as a safe feed ingredient for lactating dairy cows.
Collapse
Affiliation(s)
- Agung Irawan
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331; Universitas Sebelas Maret, Surakarta, 57126 Central Java, Indonesia
| | | | - Hunter Robert Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Serkan Ates
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Jenifer Cruickshank
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Juliana Ranches
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Charles T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331; Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331.
| |
Collapse
|
3
|
Parker NB, Bionaz M, Ford HR, Irawan A, Trevisi E, Ates S. Assessment of spent hemp biomass as a potential ingredient in ruminant diet: nutritional quality and effect on performance, meat and carcass quality, and hematological parameters in finishing lambs. J Anim Sci 2022; 100:skac263. [PMID: 35953240 PMCID: PMC9584163 DOI: 10.1093/jas/skac263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Spent hemp biomass (SHB), a byproduct of cannabinoid extraction from the production of industrial hemp has not been approved by FDA-CVM since its effects on animal health, performance, and product quality are unknown. Our objective was to investigate the effects of feeding two levels of SHB and a 4-wk withdrawal period on performance, carcass characteristic, meat quality, and hematological parameters in finishing lambs. A total of 35 weaned, Polypay male lambs kept in single pens were randomly assigned to five feeding treatments (n = 7) and fed diets containing either no SHB (CON) or SHB at 10% (LH1) or 20% (HH1) for 4 wk with 4 wk of clearing period from SHB, or SHB at 10% (LH2) or 20% (HH2) for 8 wk. Chemical analysis revealed SHB to have a nutritive quality similar to alfalfa with no mycotoxin, terpenes, or organic residuals as a result of the extraction process. Feed intake of lambs was negatively affected by 20% SHB in period 1 but not in period 2 where feed intake was the greatest in HH1 and LH2. In contrast, none of the performance data, including liveweight gains, were different across the groups and periods. In period 1, blood glucose, cholesterol, calcium, paraoxonase, and tocopherol were decreased by the level of SHB fed, while bilirubin and alkaline phosphatase (ALP) were increased. In period 2, the concentration in blood of urea, magnesium, bilirubin, ALP, and ferric reducing ability of the plasma (FRAP) were higher in LH2 and HH2 as compared with CON, while β-hydroxybutyrate was lower in HH2. Blood parameters related to liver health, kidney function, immune status, and inflammation were unaffected by feeding SHB. Most carcass and meat quality parameters did not differ across feeding groups either. Except carcass purge loss and meat cook loss were larger in lambs that were fed 20% SHB. Although lower feed intake of lambs that were fed 20% SHB initially in period 1 suggested SHB was not palatable to the lambs, increased feed intake at a lower level of inclusion at 10% in period 2 may point to a positive long-term effect of feeding SHB.
Collapse
Affiliation(s)
- Nathan B Parker
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Hunter R Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Agung Irawan
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza PC, Italy
| | - Serkan Ates
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Preliminary Investigation of the Effects of Rosemary Extract Supplementation on Milk Production and Rumen Fermentation in High-Producing Dairy Cows. Antioxidants (Basel) 2022; 11:antiox11091715. [PMID: 36139788 PMCID: PMC9495500 DOI: 10.3390/antiox11091715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Rosemary extract (RE) has been used as an antioxidant in cosmetics and food additives, indicating its potential as a feed additive to improve adaptation in high-producing dairy cows. Here, we investigated the effects of RE supplementation on lactation performance and rumen fermentation in high-producing dairy cows. Thirty multiparous cows were blocked into 15 groups based on milk production and were randomly assigned to one of two treatments: 0 or 28 g/d of RE supplementation to the basic diet per cow. The experiment was conducted over a 74-day period, which included an initial two-week adaptation period. We observed significant increases in milk and milk lactose yields following RE supplementation. Somatic cell count tended to decrease by treatment. Additionally, superoxide dismutase concentration significantly increased and malonaldehyde level decreased after RE supplementation. Sequencing of 16S rRNA revealed that RE supplementation significantly affected the microbial composition and decreased the richness of the microbiota. Specifically, the abundance of the genus Prevotella was significantly decreased by RE supplementation and was correlated with volatile fatty acids in the Mantel test, whereas no significant correlation was found for other genera. Our findings provide fundamental information on the potential for RE as a feed additive for dairy cows to improve antioxidant status and enhance propionate generation.
Collapse
|
5
|
Wei K, Louis H, Emori W, Idante PS, Agwamba EC, Cheng CR, Eno EA, Unimuke TO. Antispasmodic activity of carnosic acid extracted from rosmarinus officinalis: Isolation, spectroscopic characterization, DFT studies, and in silico molecular docking investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132795] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|