1
|
Ren Q, Qu L, Yuan Y, Wang F. Natural Modulators of Key Signaling Pathways in Skin Inflammageing. Clin Cosmet Investig Dermatol 2024; 17:2967-2988. [PMID: 39712942 PMCID: PMC11663375 DOI: 10.2147/ccid.s502252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Low-grade chronic inflammation without obvious infection is defined as "inflammageing" and a key driver of skin ageing. Although the importance of modulating inflammageing for treating skin diseases and restoring cutaneous homeostasis is increasingly being recognized. However, the mechanisms underlying skin inflammageing, particularly those associated with natural treatments, have not been systematically elucidated. This review explores the signaling pathways associated with skin inflammageing, as well as the natural plants and compounds that directly or indirectly target these pathways. Nine signaling pathways and 60 plants/constituents related to skin anti-inflammageing are discussed, exploring plant mechanisms to mitigate skin inflammageing. Common natural plants with anti-inflammageing activity are detailed by active ingredients, mechanisms, therapeutic potential, and quantitative effects on skin inflammageing modulation. This review strengthens our understanding of these botanical ingredients as natural interventions against skin inflammageing and provides directions for future research.
Collapse
Affiliation(s)
- Qianqian Ren
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Yonglei Yuan
- Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai, 201702, People’s Republic of China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| |
Collapse
|
2
|
王 磊, 卞 芬, 马 飞, 方 舒, 凌 梓, 刘 梦, 孙 红, 付 程, 倪 诗, 赵 晓, 冯 心, 孙 正, 卢 国, 康 品, 吴 士. [Activation of ALDH2 alleviates hypoxic pulmonary hypertension in mice by upregulating the SIRT1/PGC-1α signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1955-1964. [PMID: 39523096 PMCID: PMC11526457 DOI: 10.12122/j.issn.1673-4254.2024.10.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate whether activation of mitochondrial acetal dehydrogenase 2 (ALDH2) alleviates hypoxic pulmonary hypertension by regulating the SIRT1/PGC-1α signaling pathway. METHODS Thirty 8-week-old C57 BL/6 mice were randomized into control, hypoxia, and hypoxia +Alda-1 (an ALDH2 activator) group (n=10), and the mice in the latter two groups, along with 10 ALDH2 knockout (ALDH2-/-) mice, were exposed to hypoxia (10% O2, 90% N2) with or without daily intraperitoneal injection of Alda-1 for 4 weeks. The changes in right ventricular function and pressure (RVSP) of the mice were evaluated by echocardiography and right ventricular catheter test, and pulmonary artery pressure was estimated based on RVSP. Pulmonary vascular remodeling, right ventricular injury, myocardial α -SMA expression, distal pulmonary arteriole muscle normalization, right ventricular cross-sectional area, myocardial cell hypertrophy, and right cardiac hypertrophy index were assessed with HE staining, immunofluorescence staining and WGA staining, and the expressions of ALDH2, SIRT1, PGC-1α, P16INK4A and P21CIP1 were detected. In pulmonary artery smooth muscle cells with hypoxic exposure, the effect of Alda-1 and EX527 on cell senescence and protein expressions was evaluated using β-galactose staining and Western blotting. RESULTS The wild-type mice with hypoxic exposure showed significantly increased RVSP, right ventricular free wall thickness and myocardial expressions of P16INK4A and P21CIP1, which were effectively lowered by treatment with Alda-1 but further increased in ALDH2-/- mice. In cultured pulmonary artery smooth muscle cells, hypoxic exposure significantly increased senescent cell percentage and cellular expressions of P16INK4A and P21CIP1, which were all lowered by treatment with Alda-1, but its effect was obviously attenuated by EX527 treatment. CONCLUSION ALDH2 alleviates hypoxiainduced senescence of pulmonary artery smooth muscle cells by upregulating the SIRT1/PGC-1α signaling pathway to alleviate pulmonary hypertension in mice.
Collapse
|
3
|
Zatloukalova M, Hanyk J, Papouskova B, Kabelac M, Vostalova J, Vacek J. Tapinarof and its structure-activity relationship for redox chemistry and phototoxicity on human skin keratinocytes. Free Radic Biol Med 2024; 223:212-223. [PMID: 39067626 DOI: 10.1016/j.freeradbiomed.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4'-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315-399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides.
Collapse
Affiliation(s)
- Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Jiri Hanyk
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Barbora Papouskova
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Martin Kabelac
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Szaefer H, Licznerska B, Baer-Dubowska W. The Aryl Hydrocarbon Receptor and Its Crosstalk: A Chemopreventive Target of Naturally Occurring and Modified Phytochemicals. Molecules 2024; 29:4283. [PMID: 39339278 PMCID: PMC11433792 DOI: 10.3390/molecules29184283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an environmentally sensitive transcription factor (TF) historically associated with carcinogenesis initiation via the activation of numerous carcinogens. Nowadays, the AhR has been attributed to multiple endogenous functions to maintain cellular homeostasis. Moreover, crosstalk, often reciprocal, has been found between the AhR and several other TFs, particularly estrogen receptors (ERs) and nuclear factor erythroid 2-related factor-2 (Nrf2). Adequate modulation of these signaling pathways seems to be an attractive strategy for cancer chemoprevention. Several naturally occurring and synthetically modified AhR or ER ligands and Nrf2 modulators have been described. Sulfur-containing derivatives of glucosinolates, such as indole-3-carbinol (I3C), and stilbene derivatives are particularly interesting in this context. I3C and its condensation product, 3,3'-diindolylmethane (DIM), are classic examples of blocking agents that increase drug-metabolizing enzyme activity through activation of the AhR. Still, they also affect multiple essential signaling pathways in preventing hormone-dependent cancer. Resveratrol is a competitive antagonist of several classic AhR ligands. Its analogs, with ortho-methoxy substituents, exert stronger antiproliferative and proapoptotic activity. In addition, they modulate AhR activity and estrogen metabolism. Their activity seems related to a number of methoxy groups introduced into the stilbene structure. This review summarizes the data on the chemopreventive potential of these classes of phytochemicals, in the context of AhR and its crosstalk modulation.
Collapse
Affiliation(s)
- Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (B.L.); (W.B.-D.)
| | | | | |
Collapse
|
5
|
Koh YC, Pan MH. Food-Borne Polycyclic Aromatic Hydrocarbons and Circadian Disruption. ACS OMEGA 2024; 9:31298-31312. [PMID: 39072055 PMCID: PMC11270680 DOI: 10.1021/acsomega.4c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Circadian disruption has been found to increase the risk of metabolic diseases, brain disorders, and cancer. The aryl hydrocarbon receptor (AhR), responsible for xenobiotic metabolism, is known to be activated by certain environmental stimuli, including polycyclic aromatic hydrocarbons (PAHs). Exposure to these stimuli may lead to diseases related to circadian disruption, with AhR activation suggested as a leading cause. Both the aryl hydrocarbon receptor nuclear translocator (ARNT) and aryl hydrocarbon receptor nuclear translocator-like (BMAL1) are class II basic helix-loop-helix/Per-ARNT-SIM (bHLH-PAS) proteins. These proteins form heterodimers with stimulated class I bHLH-PAS proteins, including circadian locomotor output cycles kaput (CLOCK) and AhR. Due to their sequential similarity, the overactivation of AhR by toxicants, such as PAHs, may lead to the formation of heterodimers with BMAL1, potentially causing circadian disruption. Dysregulation of BMAL1 can affect a wide range of metabolic genes, emphasizing its crucial roles. However, this issue has not been adequately addressed. Previous studies have reported that the inhibitory effects of phytochemicals on AhR activation can ameliorate diseases induced by environmental toxicants. Additionally, some phytochemicals have shown preventive effects on circadian misalignment. Therefore, this Review aims to explore potential strategies to prevent circadian disruption induced by food-borne toxicants, such as benzo[a]pyrene; to generate new ideas for future studies; and to highlight the importance of investigating these preventive strategies.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 106017, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 106017, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404327, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung City 413305, Taiwan
| |
Collapse
|
6
|
Zhou DD, Cheng J, Li J, Wu SX, Xiong RG, Huang SY, Cheung PCK, Li HB. Resveratrol and Its Analogues: Anti-ageing Effects and Underlying Mechanisms. Subcell Biochem 2024; 107:183-203. [PMID: 39693025 DOI: 10.1007/978-3-031-66768-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ageing is a natural process accompanied by functional and structural decline of diverse tissues and organs, which could cause susceptibility to various diseases and death. The anti-ageing interventions have aroused huge research interest with the rapid rise of ageing population in the world. Resveratrol, a polyphenolic stilbene, could be naturally isolated from various plants, such as grapes, blueberries, and peanuts. Many studies indicated that resveratrol possessed a broad spectrum of bioactivities, especially anti-ageing activity. A lot of attention has also been focused on resveratrol analogues because they have a similar structure to resveratrol, which may confer them a potent anti-ageing effect. The anti-ageing mechanisms of resveratrol and its analogues are complex and multifactorial, involving suppressing oxidative stress, ameliorating inflammation, activating SIRT1 pathway, reducing DNA damage, etc. In this chapter, the anti-ageing effects of resveratrol and its analogues are summarised with special attention paid to the underlying mechanisms. Further understanding of these small molecules could provide the necessary scientific basis for their development into anti-ageing agents.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jin Cheng
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Si-Xia Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Gu Xiong
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Huang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Peter Chi-Keung Cheung
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Hua-Bin Li
- School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Chao L, Feng B, Liang H, Zhao X, Song J. Particulate matter and inflammatory skin diseases: From epidemiological and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167111. [PMID: 37716690 DOI: 10.1016/j.scitotenv.2023.167111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Epidemiological and toxicological studies have confirmed that exposure to atmospheric particulate matter (PM) could affect our cardiovascular and respiratory systems. Recent studies have shown that PM can penetrate the skin and cause skin inflammation, but the evidence is limited and contradictory. As the largest outermost surface of the human body, the skin is constantly exposed to the environment. The aim of this study was to assess the relationship between PM and inflammatory skin diseases. Most epidemiological studies have provided positive evidence for outdoor, indoor, and wildfire PM and inflammatory skin diseases. The effects of PM exposure during pregnancy and inflammatory skin diseases in offspring are heterogeneous. Skin barrier dysfunction, Oxidative stress, and inflammation may play a critical role in the underlying mechanisms. Finally, we summarize some interventions to alleviate PM-induced inflammatory skin diseases, which may contribute to public health welfare. Overall, PM is related to inflammatory skin diseases via skin barrier dysfunction, oxidative stress, and inflammation. Appropriate government interventions are beneficial.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Bin Feng
- Environmental Health Section, Xinxiang Health Technology Supervision Center, School of Management, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haiyan Liang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Xiangmei Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
8
|
Zhu C, Nie X, Lu Q, Bai Y, Jiang Z. Roles and regulation of Aquaporin-3 in maintaining the gut health: an updated review. Front Physiol 2023; 14:1264570. [PMID: 38089478 PMCID: PMC10714013 DOI: 10.3389/fphys.2023.1264570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2025] Open
Abstract
Aquaporin-3 (AQP3) is a predominant water channel protein expressed in the intestine, and plays important roles in the gut physiology and pathophysiology due to its permeability to water, glycerol and hydrogen peroxide. In this review, we systematically summarized the current understanding of the expression of AQP3 in the intestine of different species, and focused on the potential roles of AQP3 in water transport, different types of diarrhea and constipation, intestinal inflammation, intestinal barrier function, oxidative stress, and autophagy. These updated findings have supported that AQP3 may function as an important target in maintaining gut health of human and animals.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qi Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
9
|
Foglio E, D’Avorio E, Vitiello L, Masuelli L, Bei R, Pacifici F, Della-Morte D, Mirabilii S, Ricciardi MR, Tafuri A, Garaci E, Russo MA, Tafani M, Limana F. Doxorubicin-Induced Cardiac Senescence Is Alleviated Following Treatment with Combined Polyphenols and Micronutrients through Enhancement in Mitophagy. Cells 2023; 12:2605. [PMID: 37998340 PMCID: PMC10670650 DOI: 10.3390/cells12222605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Oxidative stress and impaired mitophagy are the hallmarks of cardiomyocyte senescence. Specifically, a decrease in mitophagic flux leads to the accumulation of damaged mitochondria and the development of senescence through increased ROS and other mediators. In this study, we describe the preventive role of A5+, a mix of polyphenols and other micronutrients, in doxorubicin (DOXO)-induced senescence of H9C2 cells. Specifically, H9C2 cells exposed to DOXO showed an increase in the protein expression proteins of senescence-associated genes, p21 and p16, and a decrease in the telomere binding factors TRF1 and TRF2, indicative of senescence induction. Nevertheless, A5+ pre-treatment attenuated the senescent-like cell phenotype, as evidenced by inhibition of all senescent markers and a decrease in SA-β-gal staining in DOXO-treated H9C2 cells. Importantly, A5+ restored the LC3 II/LC3 I ratio, Parkin and BNIP3 expression, therefore rescuing mitophagy, and decreased ROS production. Further, A5+ pre-treatment determined a ripolarization of the mitochondrial membrane and improved basal respiration. A5+-mediated protective effects might be related to its ability to activate mitochondrial SIRT3 in synergy with other micronutrients, but in contrast with SIRT4 activation. Accordingly, SIRT4 knockdown in H9C2 cells further increased MnSOD activity, enhanced mitophagy, and reduced ROS generation following A5+ pre-treatment and DOXO exposure compared to WT cells. Indeed, we demonstrated that A5+ protects H9C2 cells from DOXO-induced senescence, establishing a new specific role for A5+ in controlling mitochondrial quality control by restoring SIRT3 activity and mitophagy, which provided a molecular basis for the development of therapeutic strategies against cardiomyocyte senescence.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, 04100 Latina, Italy
| | - Erica D’Avorio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
| | | | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (M.T.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Francesca Pacifici
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Simone Mirabilii
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Maria Rosaria Ricciardi
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Agostino Tafuri
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Enrico Garaci
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
| | - Matteo Antonio Russo
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy;
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (M.T.)
| | - Federica Limana
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
10
|
Liu P, Tang W, Zhao D, Zhou P, Hu K. Active metabolites and potential mechanisms of Notopterygium incisum against obstructive sleep apnea Syndrome (OSAS): network analysis and experimental assessment. Front Pharmacol 2023; 14:1185100. [PMID: 37719850 PMCID: PMC10500596 DOI: 10.3389/fphar.2023.1185100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Background: Notopterygium incisum K.C. Ting ex H.T. Chang, a synonym of Hansenia weberbaueriana (Fedde ex H. Wolff) Pimenov & Kljuykov, is an anti-inflammatory medicinal plant. Although abrnotopterol has been reported to be its primary active metabolite, the other metabolites and their mechanisms of action remain unclear. This study aims to investigate the potential mechanisms by which its active metabolites treat Obstructive Sleep Apnea Syndrome (OSAS) through network analysis and experimental assessment. Methods: The metabolites and potential targets of Notopterygium incisum were extracted from public databases. We searched for OSAS-related genes in the Genecards, OMIM, PharmGkb, TTD, and DrugBank databases. Cytoscape 3.9.0 was used to construct the drug-target-disease network and screen for hub genes. Human bronchial epithelial (HBE) cells were cultivated in normoxia and chronic intermittent hypoxia (CIH) medium for 24 h. Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2) were quantified using enzyme-linked immunosorbent assay (ELISA). Prostaglandin-endoperoxide synthase 2(PTGS2) mRNA was detected using RT-qPCR, while PTGS2 and nuclear factor-kappa B (NF-κB) proteins were identified using Western blot analysis. Co-Immunoprecipitation (CoIP) and Western blotting were utilized to evaluate the ubiquitination of PTGS2 in HBE cells. Results: Pterostilbene and notopterol, isolated from Notopterygium incisum, had potential therapeutic effects on OSAS. The PTGS2 and estrogen receptor alpha (ESR1) hub genes were associated with OSAS. The pathway enrichment analysis focuses on the NF-κB, apoptosis, and HIF-1A pathways. In response to CIH, pterostilbene and notopterol decreased IL-6, TNF-α, and PGE2 levels. The NF-κB pathway was activated by an increase in PTGS2 levels. Pterostilbene promoted proteasome-mediated ubiquitination of PTGS2 protein and reduced PTGS2 levels, inhibiting the NF-κB pathway. Conclusion: This study reveals the active metabolites of Notopterygium incisum and hub genes involved in treating OSAS, which provide a basis for the follow-up development and exploitation of the botanical drug.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pan Zhou
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Wang G, Zhang H, Zhou Z, Jin W, Zhang X, Ma Z, Wang X. AQP3-mediated activation of the AMPK/SIRT1 signaling pathway curtails gallstone formation in mice by inhibiting inflammatory injury of gallbladder mucosal epithelial cells. Mol Med 2023; 29:116. [PMID: 37641009 PMCID: PMC10463418 DOI: 10.1186/s10020-023-00712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Inflammatory injury of gallbladder mucosal epithelial cells affects the development of cholelithiasis, and aquaporin 3 (AQP3) is an important regulator of inflammatory response. This study reports a mechanistic insight into AQP3 regulating gallstone formation in cholelithiasis based on high-throughput sequencing. METHODS A mouse model of cholelithiasis was induced using a high-fat diet, and the gallbladder tissues were harvested for high-throughput sequencing to obtain differentially expressed genes. Primary mouse gallbladder mucosal epithelial cells were isolated and induced with Lipopolysaccharides (LPS) to mimic an in vitro inflammatory injury environment. Cell biological phenotypes were detected by TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay, and Trypan blue staining. In addition, enzyme linked immunosorbent assay (ELISA) determined the production of inflammatory factors in mouse gallbladder mucosa. RESULTS Whole-transcriptome sequencing data analysis identified 489 up-regulated and 1007 down-regulated mRNAs. Bioinformatics analysis revealed that AQP3 was significantly down-regulated in mice with cholelithiasis. AQP3 might also confer an important role in LPS-induced gallbladder mucosal injury. Overexpression of AQP3 activated the AMPK (adenosine monophosphate-activated protein kinase) / SIRT1 (sirtuin-1) signaling pathway to reduce LPS-induced inflammatory injury of the gallbladder mucosa epithelium, thereby ameliorating gallbladder damage and repressing gallstone formation in mice. CONCLUSION Data from our study highlight the inhibitory role of AQP3 in gallbladder damage and gallstone formation in mice by reducing inflammatory injury of gallbladder mucosal epithelial cells, which is achieved through activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xin Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zenghui Ma
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
12
|
Knap B, Nieoczym D, Kundap U, Kusio-Targonska K, Kukula-Koch W, Turski WA, Gawel K. Zebrafish as a robust preclinical platform for screening plant-derived drugs with anticonvulsant properties-a review. Front Mol Neurosci 2023; 16:1221665. [PMID: 37701853 PMCID: PMC10493295 DOI: 10.3389/fnmol.2023.1221665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 09/14/2023] Open
Abstract
Traditionally, selected plant sources have been explored for medicines to treat convulsions. This continues today, especially in countries with low-income rates and poor medical systems. However, in the low-income countries, plant extracts and isolated drugs are in high demand due to their good safety profiles. Preclinical studies on animal models of seizures/epilepsy have revealed the anticonvulsant and/or antiepileptogenic properties of, at least some, herb preparations or plant metabolites. Still, there is a significant number of plants known in traditional medicine that exert anticonvulsant activity but have not been evaluated on animal models. Zebrafish is recognized as a suitable in vivo model of epilepsy research and is increasingly used as a screening platform. In this review, the results of selected preclinical studies are summarized to provide credible information for the future development of effective screening methods for plant-derived antiseizure/antiepileptic therapeutics using zebrafish models. We compared zebrafish vs. rodent data to show the translational value of the former in epilepsy research. We also surveyed caveats in methodology. Finally, we proposed a pipeline for screening new anticonvulsant plant-derived drugs in zebrafish ("from tank to bedside and back again").
Collapse
Affiliation(s)
- Bartosz Knap
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Uday Kundap
- Canada East Spine Center, Saint John Regional Hospital, Horizon Health Center, Saint John, NB, Canada
| | - Kamila Kusio-Targonska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University, Lublin, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
13
|
Jeong M, Ju Y, Kwon H, Kim Y, Hyun KY, Choi GE. Protocatechuic Acid and Syringin from Saussurea neoserrata Nakai Attenuate Prostaglandin Production in Human Keratinocytes Exposed to Airborne Particulate Matter. Curr Issues Mol Biol 2023; 45:5950-5966. [PMID: 37504292 PMCID: PMC10378452 DOI: 10.3390/cimb45070376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023] Open
Abstract
Saussurea neoserrata Nakai offers a reliable and efficient source of antioxidants that can help alleviate adverse skin reactions triggered by air pollutants. Air pollutants, such as particulate matter (PM), have the ability to infiltrate the skin and contribute to the higher occurrence of cardiovascular, cerebrovascular, and respiratory ailments. Individuals with compromised skin barriers are particularly susceptible to the impact of PM since it can be absorbed more readily through the skin. This study investigated the impact of protocatechuic acid and syringin, obtained from the n-BuOH extract of S. neoserrata Nakai, on the release of PGE2 and PGD2 induced by PM10. Additionally, it examined the gene expression of the synthesis of PGE2 and PGD2 in human keratinocytes. The findings of this research highlight the potential of utilizing safe and efficient plant-derived antioxidants in dermatological and cosmetic applications to mitigate the negative skin reactions caused by exposure to air pollution.
Collapse
Affiliation(s)
- Myeongguk Jeong
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Yeongdon Ju
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
- Medical Science Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyeokjin Kwon
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Yeeun Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Kyung-Yae Hyun
- Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Republic of Korea
| | - Go-Eun Choi
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| |
Collapse
|
14
|
Paik SJ, Kim DJ, Jung SK. Preventive Effect of Pharmaceutical Phytochemicals Targeting the Src Family of Protein Tyrosine Kinases and Aryl Hydrocarbon Receptor on Environmental Stress-Induced Skin Disease. Int J Mol Sci 2023; 24:ijms24065953. [PMID: 36983027 PMCID: PMC10056297 DOI: 10.3390/ijms24065953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The skin protects our body; however, it is directly exposed to the environment and is stimulated by various external factors. Among the various environmental factors that can threaten skin health, the effects of ultraviolet (UV) and particulate matter (PM) are considered the most notable. Repetitive exposure to ultraviolet and particulate matter can cause chronic skin diseases such as skin inflammation, photoaging, and skin cancer. The abnormal activation of the Src family of protein tyrosine kinases (SFKs) and the aryl hydrocarbon receptor (AhR) in response to UV and/or PM exposure are involved in the development and aggravation of skin diseases. Phytochemicals, chemical compounds of natural plants, exert preventive effects on skin diseases through the regulation of various signaling pathways. Therefore, this review aims to highlight the efficacy of phytochemicals as potential nutraceuticals and pharmaceutical materials for the treatment of skin diseases, primarily by targeting SFK and AhR, and to explore the underlying mechanisms of action. Future studies are essential to validate the clinical potential for the prevention and treatment of skin diseases.
Collapse
Affiliation(s)
- So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Lin TC, Yang CY, Wu TH, Tseng CH, Yen FL. Myricetin Nanofibers Enhanced Water Solubility and Skin Penetration for Increasing Antioxidant and Photoprotective Activities. Pharmaceutics 2023; 15:pharmaceutics15030906. [PMID: 36986766 PMCID: PMC10058934 DOI: 10.3390/pharmaceutics15030906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Excessive exposure to ultraviolet radiation (UV) can induce oxidative stress through the over-production of reactive oxygen species (ROS) on the skin. Myricetin (MYR), a natural flavonoid compound, significantly inhibited UV-induced keratinocyte damage; however, its bioavailability is limited by its poor water solubility and inefficient skin penetration ability, which subsequently influences its biological activity. The purpose of the study was to develop a myricetin nanofibers (MyNF) system of hydroxypropyl-β-cyclodextrin (HPBCD)/polyvinylpyrrolidone K120 (PVP)-loaded with MYR that would enhance the water solubility and skin penetration by changing the physicochemical characteristics of MYR, including reducing the particle size, increasing the specific surface area, and amorphous transformation. The results also revealed that the MyNF can reduce cytotoxicity in HaCaT keratinocytes when compared with MYR; additionally, MyNF had better antioxidant and photoprotective activity than raw MYR for the UVB-induced HaCaT keratinocytes damage model due to the MyNF increased water solubility and permeability. In conclusion, our results demonstrate that MyNF is a safe, photostable, and thermostable topical ingredient of antioxidant nanofibers to enhance the skin penetration of MYR and prevent UVB-induced skin damage.
Collapse
Affiliation(s)
- Tzu-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Chun-Yin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Tzu-Hui Wu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 801, Taiwan
- Correspondence: (C.-H.T.); (F.-L.Y.); Tel.: +886-7-312-1101 (ext. 2163) (C.-H.T.); +886-7-312-1101 (ext. 2028) (F.-L.Y.)
| | - Feng-Lin Yen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung County 912, Taiwan
- Correspondence: (C.-H.T.); (F.-L.Y.); Tel.: +886-7-312-1101 (ext. 2163) (C.-H.T.); +886-7-312-1101 (ext. 2028) (F.-L.Y.)
| |
Collapse
|
16
|
Sharma A, Chabloz S, Lapides RA, Roider E, Ewald CY. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023; 15:nu15020445. [PMID: 36678315 PMCID: PMC9861325 DOI: 10.3390/nu15020445] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Disrupted biological function, manifesting through the hallmarks of aging, poses one of the largest threats to healthspan and risk of disease development, such as metabolic disorders, cardiovascular ailments, and neurodegeneration. In recent years, numerous geroprotectors, senolytics, and other nutraceuticals have emerged as potential disruptors of aging and may be viable interventions in the immediate state of human longevity science. In this review, we focus on the decrease in nicotinamide adenine dinucleotide (NAD+) with age and the supplementation of NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), in combination with other geroprotective compounds, to restore NAD+ levels present in youth. Furthermore, these geroprotectors may enhance the efficacy of NMN supplementation while concurrently providing their own numerous health benefits. By analyzing the prevention of NAD+ degradation through the inhibition of CD38 or supporting protective downstream agents of SIRT1, we provide a potential framework of the CD38/NAD+/SIRT1 axis through which geroprotectors may enhance the efficacy of NAD+ precursor supplementation and reduce the risk of age-related diseases, thereby potentiating healthspan in humans.
Collapse
Affiliation(s)
- Arastu Sharma
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- AVEA Life AG, Bahnhofplatz, 6300 Zug, Switzerland
| | | | - Rebecca A. Lapides
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Robert Larner, MD College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Elisabeth Roider
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Maximon AG, Bahnhofplatz, 6300 Zug, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- Correspondence:
| |
Collapse
|
17
|
Zhang L, Tian G, Huang L, Zhou M, Zhu J, Yi L, Mi M. Pterostilbene attenuates intestinal epithelial barrier loss induced by high loading intensity of exercise. Front Nutr 2022; 9:965180. [PMID: 35990348 PMCID: PMC9386544 DOI: 10.3389/fnut.2022.965180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Mounting evidence suggested that high loading intensity of exercise might be detrimental to human health, especially the gastrointestinal tract. Pterostilbene (PTE), derived from grapes and blueberries, might reach a high concentration of intestinal contents. Our study aimed to evaluate PTE’s ability to prevent the loss of intestinal epithelial barrier in high loading intensity of exercise. The exercise model was established by the forced running of mice. An effective HPLC-UV method was developed to quantify PTE concentration in intestinal content. The mRNA changes were detected by quantitative polymerase chain reaction (qPCR). The structure of intestinal flora was analyzed by 16S rRNA sequencing. The PTE (100 mg/kg/d) could significantly attenuate exercise-induced intestinal epithelial barrier loss. Moreover, the HPLC-UV assay showed that the PTE concentration of intestinal content could last 12 h. Furthermore, the exercise increased the abundance of Alistipes, which was related to lipopolysaccharide (LPS) production but could not be reversed by PTE intervention. Besides, cell experiments showed that PTE could promote the expression of intestinal epithelial tight junction (TJ) molecules in vitro. In conclusion, PTE has a significant interest in preventing exercise-induced intestinal damage.
Collapse
Affiliation(s)
- Lidong Zhang
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guoliang Tian
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Huang
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Zhou
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jundong Zhu
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Long Yi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mantian Mi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
18
|
Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 2022; 13:943321. [PMID: 35935939 PMCID: PMC9355713 DOI: 10.3389/fimmu.2022.943321] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Quercetin, a naturally non-toxic flavonoid within the safe dose range with antioxidant, anti-apoptotic and anti-inflammatory properties, plays an important role in the treatment of aging-related diseases. Sirtuin 1 (SIRT1), a member of NAD+-dependent deacetylase enzyme family, is extensively explored as a potential therapeutic target for attenuating aging-induced disorders. SIRT1 possess beneficial effects against aging-related diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Depression, Osteoporosis, Myocardial ischemia (M/I) and reperfusion (MI/R), Atherosclerosis (AS), and Diabetes. Previous studies have reported that aging increases tissue susceptibility, whereas, SIRT1 regulates cellular senescence and multiple aging-related cellular processes, including SIRT1/Keap1/Nrf2/HO-1 and SIRTI/PI3K/Akt/GSK-3β mediated oxidative stress, SIRT1/NF-κB and SIRT1/NLRP3 regulated inflammatory response, SIRT1/PGC1α/eIF2α/ATF4/CHOP and SIRT1/PKD1/CREB controlled phosphorylation, SIRT1-PINK1-Parkin mediated mitochondrial damage, SIRT1/FoxO mediated autophagy, and SIRT1/FoxG1/CREB/BDNF/Trkβ-catenin mediated neuroprotective effects. In this review, we summarized the role of SIRT1 in the improvement of the attenuation effect of quercetin on aging-related diseases and the relationship between relevant signaling pathways regulated by SIRT1. Moreover, the functional regulation of quercetin in aging-related markers such as oxidative stress, inflammatory response, mitochondrial function, autophagy and apoptosis through SIRT1 was discussed. Finally, the prospects of an extracellular vesicles (EVs) as quercetin loading and delivery, and SIRT1-mediated EVs as signal carriers for treating aging-related diseases, as well as discussed the ferroptosis alleviation effects of quercetin to protect against aging-related disease via activating SIRT1. Generally, SIRT1 may serve as a promising therapeutic target in the treatment of aging-related diseases via inhibiting oxidative stress, reducing inflammatory responses, and restoring mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Xiaoling Zhao,
| |
Collapse
|
19
|
Kwack MH, Bang JS, Lee WJ. Preventative Effects of Antioxidants against PM 10 on Serum IgE Concentration, Mast Cell Counts, Inflammatory Cytokines, and Keratinocyte Differentiation Markers in DNCB-Induced Atopic Dermatitis Mouse Model. Antioxidants (Basel) 2022; 11:1334. [PMID: 35883825 PMCID: PMC9311925 DOI: 10.3390/antiox11071334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/02/2022] Open
Abstract
Particulate matter (PM) can cause oxidative stress, inflammation, and skin aging. We investigated the effects of antioxidants such as dieckol, punicalagin, epigallocatechin gallate (EGCG), resveratrol, and Siegesbeckiae Herba extract (SHE) against PM < 10 μm (PM10) on serum IgE concentration, mast cell counts, inflammatory cytokines, and keratinocyte differentiation markers in a 2,4-Dinitrochlorobenzene (DNCB)-induced atopic dermatitis mouse model. Seven-week-old BALB/c mice were sensitized with 2% DNCB. Atopic dermatitis-like lesions were induced on the mice with 0.2% DNCB. Antioxidants and PM10 were applied to the mice for 4 weeks. PM10 increased the serum IgE concentration and spleen weight in mice, and all antioxidants downregulated these parameters. Histological examination showed an increase in epidermal thickness and mast cell counts in response to PM10, and all antioxidants showed a decrease. PM10 upregulates the expression of inflammatory cytokines, including interleukin (IL)-1β, IL-4, IL-6, IL-17α, IL-25, IL-31 and thymic stromal lymphopoietin (TSLP) in mice, and all antioxidants inhibited the upregulation of inflammatory cytokines. ELISA showed the same results as real-time PCR. PM10 downregulates the expression of keratinocyte differentiation markers, including loricrin and filaggrin, in mouse keratinocytes and antioxidants prevented the downregulation of the keratinocyte differentiation markers. Conclusively, PM10 aggravated the DNCB-induced mouse model in serum IgE concentration, mast cell counts, inflammatory cytokine, and keratinocyte differentiation markers. In addition, antioxidants modulated changes in the DNCB-induced mouse model caused by PM10.
Collapse
Affiliation(s)
- Mi Hee Kwack
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Jin Seon Bang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Weon Ju Lee
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| |
Collapse
|
20
|
Repetitive Bathing and Skin Poultice with Hydrogen-Rich Water Improve Wrinkles and Blotches Together with Modulation of Skin Oiliness and Moisture. HYDROGEN 2022. [DOI: 10.3390/hydrogen3020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogen-rich warm water (HW) has not been verified yet for skin anti-aging effects. Daily 10 min HW (dissolved hydrogen: 338–682 μg/mL, 41 °C) bathing and skin poultice with HW-impregnated towels for 11–61 days were demonstrated to improve wrinkle degrees (29 skin-loci) from 3.14 ± 0.52 to 1.52 ± 0.74 (p < 0.001) and blotch degrees (23 loci) from 3.48 ± 0.67 to 1.74 ± 0.86 (p < 0.001) in five healthy subjects (49–66 years old), by densito-/planimetrically evaluating with an Image-J software, and ranked into six hierarchies (0, 1–5). Meanwhile, skin oiliness was evaluated to increase for the oil-poor skins, but inversely decrease for excessively oily skins, suggesting the HW’s function as skin-oiliness modulation, with an appreciably negative correlation in prior oiliness contents versus change after HW application (r = −0.345, 23 loci). Skin moisture increased upon HW application, with a negative correlation (r = −0.090, 23 loci) in prior moisture contents versus post-HW-application moisture-changing rates, meaning that HW application compensated moisture for water-deficient skins (27.5–40% moisture), but not for wet skins (>41% moisture). Thus, the HW bath together with HW poultice exerted beneficial effects on skin appearances such as wrinkles, blotches and moisture/oiliness, some of which might ensue from enhanced antioxidant ability in blood, as was previously demonstrated for the HW bath.
Collapse
|
21
|
Hoshiba T. A decellularized extracellular matrix derived from keratinocytes can suppress cellular senescence induced by replicative and oxidative stresses. Biomater Sci 2022; 10:6828-6835. [DOI: 10.1039/d2bm00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Keratinocyte senescence is suppressed on a keratinocyte-derived decellularized ECM (dECM) through the increase of antioxidant activity. Keratinocyte function is also increased on this dECM, suggesting that this dECM is useful to establish epidermal models.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
22
|
The Protective Effect of Hamamelis virginiana Stem and Leaf Extract on Fine Dust-Induced Damage on Human Keratinocytes. COSMETICS 2021. [DOI: 10.3390/cosmetics8040119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Witch hazel extracts have been used for decades as cosmetic ingredients in skin care products. Our present study aims to evaluate its potential in anti-pollution products using a previously reported in vitro model. Calcium is a universal second messenger, and we used human respiratory and skin cells to detect changes in intracellular Ca2+ concentrations upon particulate matter contact. Both an increase in pro-inflammatory markers and a decrease in tight junction proteins were confirmed, as previously reported. Witch hazel stem and leaf extract showed significant attenuation of Ca2+ response upon the challenge; it displayed systematic regulations of the signal generator, PAR-2; a pro-inflammatory marker, NF-κB; and a tight junction protein, Occludin. We identified hexagalloylglucose from the extract and concluded that it is a major component regulating protection from particulate matter. Based on these results, witch hazel extract containing hexagalloylglucose is an active ingredient in anti-pollution skin care products.
Collapse
|