1
|
Figuer A, Santos FM, Ciordia S, Valera G, Martín-Jouve B, Hernández-Fonseca JP, Bodega G, Ceprián N, Ramírez R, Carracedo J, Alique M. Proteomic analysis of endothelial cells and extracellular vesicles in response to indoxyl sulfate: Mechanisms of endothelial dysfunction in chronic kidney disease. Life Sci 2024; 351:122810. [PMID: 38871114 DOI: 10.1016/j.lfs.2024.122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
AIMS Cardiovascular pathology is the main cause of death in chronic kidney disease (CKD) patients. CKD is associated with the accumulation of uremic toxins in the bloodstream, and indoxyl sulfate (IS) is one of the most abundant uremic toxins found in the blood of CKD patients. We conducted an in vitro study to assess the mechanisms underlying the IS-induced endothelial dysfunction that could lead to cardiovascular diseases. We also studied their extracellular vesicles (EVs) owing to their capacity to act as messengers that transmit signals through their cargo. MAIN METHODS EVs were characterized by nanoparticle tracking analysis, transmission electron microscopy, flow cytometry, and tetraspanin expression. Cell lysates and isolated EVs were analyzed using liquid chromatography coupled with mass spectrometry, followed by Gene Set Enrichment Analysis to identify the altered pathways. KEY FINDINGS Proteomic analysis of endothelial cells revealed that IS causes an increase in proteins related to adipogenesis, inflammation, and xenobiotic metabolism and a decrease in proliferation. Extracellular matrix elements, as well as proteins associated with myogenesis, response to UV irradiation, and inflammation, were found to be downregulated in IS-treated EVs. Fatty acid metabolism was also found to be increased along with adipogenesis and inflammation observed in cells. SIGNIFICANCE The treatment of endothelial cells with IS increased the expression of proteins related to adipogenesis, inflammation, and xenobiotic metabolism and was less associated with proliferation. Furthermore, EVs from cells treated with IS may mediate endothelial dysfunction, since they present fewer extracellular matrix elements, myogenesis, inflammatory factors, and proteins downregulated in response to UV radiation.
Collapse
Affiliation(s)
- Andrea Figuer
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcala de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Fátima M Santos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Gemma Valera
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Beatriz Martín-Jouve
- Electron Microscopy Unit, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan Pablo Hernández-Fonseca
- Electron Microscopy Unit, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, 28871 Alcala de Henares, Madrid, Spain
| | - Noemí Ceprián
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense, 28040 Madrid, Spain
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcala de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain.
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcala de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain.
| |
Collapse
|
2
|
Yang J, Luo J, Tian X, Zhao Y, Li Y, Wu X. Progress in Understanding Oxidative Stress, Aging, and Aging-Related Diseases. Antioxidants (Basel) 2024; 13:394. [PMID: 38671842 PMCID: PMC11047596 DOI: 10.3390/antiox13040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Under normal physiological conditions, reactive oxygen species (ROS) are produced through redox reactions as byproducts of respiratory and metabolic activities. However, due to various endogenous and exogenous factors, the body may produce excessive ROS, which leads to oxidative stress (OS). Numerous studies have shown that OS causes a variety of pathological changes in cells, including mitochondrial dysfunction, DNA damage, telomere shortening, lipid peroxidation, and protein oxidative modification, all of which can trigger apoptosis and senescence. OS also induces a variety of aging-related diseases, such as retinal disease, neurodegenerative disease, osteoarthritis, cardiovascular diseases, cancer, ovarian disease, and prostate disease. In this review, we aim to introduce the multiple internal and external triggers that mediate ROS levels in rodents and humans as well as the relationship between OS, aging, and aging-related diseases. Finally, we present a statistical analysis of effective antioxidant measures currently being developed and applied in the field of aging research.
Collapse
Affiliation(s)
- Jianying Yang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (J.L.); (X.T.)
| | - Juyue Luo
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (J.L.); (X.T.)
| | - Xutong Tian
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (J.L.); (X.T.)
| | - Yaping Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China;
| | - Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China;
| | - Xin Wu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (J.L.); (X.T.)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China;
| |
Collapse
|
3
|
López-Granero C, Polyanskaya L, Ruiz-Sobremazas D, Barrasa A, Aschner M, Alique M. Particulate Matter in Human Elderly: Higher Susceptibility to Cognitive Decline and Age-Related Diseases. Biomolecules 2023; 14:35. [PMID: 38254635 PMCID: PMC10813119 DOI: 10.3390/biom14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review highlights the significant impact of air quality, specifically particulate matter (PM), on cognitive decline and age-related diseases in the elderly. Despite established links to other pathologies, such as respiratory and cardiovascular illnesses, there is a pressing need for increased attention to the association between air pollution and cognitive aging, given the rising prevalence of neurocognitive disorders. PM sources are from diverse origins, including industrial activities and combustion engines, categorized into PM10, PM2.5, and ultrafine PM (UFPM), and emphasized health risks from both outdoor and indoor exposure. Long-term PM exposure, notably PM2.5, has correlated with declines in cognitive function, with a specific vulnerability observed in women. Recently, extracellular vesicles (EVs) have been explored due to the interplay between them, PM exposure, and human aging, highlighting the crucial role of EVs, especially exosomes, in mediating the complex relationship between PM exposure and chronic diseases, particularly neurological disorders. To sum up, we have compiled the pieces of evidence that show the potential contribution of PM exposure to cognitive aging and the role of EVs in mediating PM-induced cognitive impairment, which presents a promising avenue for future research and development of therapeutic strategies. Finally, this review emphasizes the need for policy changes and increased public awareness to mitigate air pollution, especially among vulnerable populations such as the elderly.
Collapse
Affiliation(s)
- Caridad López-Granero
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Leona Polyanskaya
- Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Angel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
4
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
5
|
Martinelli RP, Rayego-Mateos S, Alique M, Márquez-Expósito L, Tejedor-Santamaria L, Ortiz A, González-Parra E, Ruiz-Ortega M. Vitamin D, Cellular Senescence and Chronic Kidney Diseases: What Is Missing in the Equation? Nutrients 2023; 15:1349. [PMID: 36986078 PMCID: PMC10056834 DOI: 10.3390/nu15061349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
As life expectancy increases in many countries, the prevalence of age-related diseases also rises. Among these conditions, chronic kidney disease is predicted to become the second cause of death in some countries before the end of the century. An important problem with kidney diseases is the lack of biomarkers to detect early damage or to predict the progression to renal failure. In addition, current treatments only retard kidney disease progression, and better tools are needed. Preclinical research has shown the involvement of the activation of cellular senescence-related mechanisms in natural aging and kidney injury. Intensive research is searching for novel treatments for kidney diseases as well as for anti-aging therapies. In this sense, many experimental shreds of evidence support that treatment with vitamin D or its analogs can exert pleiotropic protective effects in kidney injury. Moreover, vitamin D deficiency has been described in patients with kidney diseases. Here, we review recent evidence about the relationship between vitamin D and kidney diseases, explaining the underlying mechanisms of the effect of vitamin D actions, with particular attention to the modulation of cellular senescence mechanisms.
Collapse
Affiliation(s)
- Romina P. Martinelli
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Matilde Alique
- Ricors2040, 28029 Madrid, Spain
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- Ricors2040, 28029 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Emilio González-Parra
- Ricors2040, 28029 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| |
Collapse
|
6
|
Mas-Bargues C, Alique M. Extracellular Vesicles as "Very Important Particles" (VIPs) in Aging. Int J Mol Sci 2023; 24:ijms24044250. [PMID: 36835661 PMCID: PMC9964932 DOI: 10.3390/ijms24044250] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
In recent decades, extracellular vesicles have been recognized as "very important particles" (VIPs) associated with aging and age-related disease. During the 1980s, researchers discovered that these vesicle particles released by cells were not debris but signaling molecules carrying cargoes that play key roles in physiological processes and physiopathological modulation. Following the International Society for Extracellular Vesicles (ISEV) recommendation, different vesicle particles (e.g., exosomes, microvesicles, oncosomes) have been named globally extracellular vesicles. These vesicles are essential to maintain body homeostasis owing to their essential and evolutionarily conserved role in cellular communication and interaction with different tissues. Furthermore, recent studies have shown the role of extracellular vesicles in aging and age-associated diseases. This review summarizes the advances in the study of extracellular vesicles, mainly focusing on recently refined methods for their isolation and characterization. In addition, the role of extracellular vesicles in cell signaling and maintenance of homeostasis, as well as their usefulness as new biomarkers and therapeutic agents in aging and age-associated diseases, has also been highlighted.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), Instituto Sanitario de Investigación INCLIVA, 46010 Valencia, Spain
- Correspondence: (C.M.-B.); (M.A.)
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Correspondence: (C.M.-B.); (M.A.)
| |
Collapse
|
7
|
Figuer A, Alique M, Valera G, Serroukh N, Ceprían N, de Sequera P, Morales E, Carracedo J, Ramírez R, Bodega G. New mechanisms involved in the development of cardiovascular disease in chronic kidney disease. Nefrologia 2023; 43:63-80. [PMID: 37268501 DOI: 10.1016/j.nefroe.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 06/04/2023] Open
Abstract
Chronic kidney disease (CKD) is a pathology with a high worldwide incidence and an upward trend affecting the elderly. When CKD is very advanced, the use of renal replacement therapies is required to prolong its life (dialysis or kidney transplantation). Although dialysis improves many complications of CKD, the disease does not reverse completely. These patients present an increase in oxidative stress, chronic inflammation and the release of extracellular vesicles (EVs), which cause endothelial damage and the development of different cardiovascular diseases (CVD). CKD patients develop premature diseases associated with advanced age, such as CVD. EVs play an essential role in developing CVD in patients with CKD since their number increases in plasma and their content is modified. The EVs of patients with CKD cause endothelial dysfunction, senescence and vascular calcification. In addition, miRNAs free or transported in EVs together with other components carried in these EVs promote endothelial dysfunction, thrombotic and vascular calcification in CKD, among other effects. This review describes the classic factors and focuses on the role of new mechanisms involved in the development of CVD associated with CKD, emphasizing the role of EVs in the development of cardiovascular pathologies in the context of CKD. Moreover, the review summarized the EVs' role as diagnostic and therapeutic tools, acting on EV release or content to avoid the development of CVD in CKD patients.
Collapse
Affiliation(s)
- Andrea Figuer
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain.
| | - Gemma Valera
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Nadia Serroukh
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Noemí Ceprían
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Patricia de Sequera
- Sección de Nefrología, Hospital Universitario Infanta Leonor, Universidad Complutense de Madrid, Madrid, Spain
| | - Enrique Morales
- Sección de Nefrología, Hospital 12 de Octubre, Madrid, Spain
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| |
Collapse
|
8
|
Wang B, Tang X, Mao B, Zhang Q, Tian F, Zhao J, Cui S, Chen W. Anti-aging effects and mechanisms of anthocyanins and their intestinal microflora metabolites. Crit Rev Food Sci Nutr 2022; 64:2358-2374. [PMID: 36128763 DOI: 10.1080/10408398.2022.2123444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aging, a natural and inevitable physiological process, is the primary risk factor for all age-related diseases; it severely threatens the health of individuals and places a heavy burden on the public health-care system. Thus, strategies to extend the lifespan and prevent and treat age-related diseases have been gaining increasing scientific interest. Anthocyanins (ACNs) are a subclass of flavonoids widely distributed in fruits and vegetables. Growing evidence suggests that ACNs delay aging and relieve age-related diseases. However, owing to the low bioavailability of ACNs, their gut metabolites have been proposed to play a critical role in mediating health benefits. In this review, we introduce the biological fate of ACNs after consumption and highlight ACNs metabolites (phenolic acids) from intestinal microorganisms. Additionally, ACNs and gut metabolites exhibit outstanding anti-aging ability in Caenorhabditis elegans, Drosophila melanogaster, and mouse models, probably associated with increasing antioxidation, anti-inflammation, protein homeostasis, antiglycation, mitochondrial function, and inhibition of insulin/IGF-1 signaling (IIS). ACNs and gut metabolites have great application prospects as functional foods and drugs to delay aging and manage age-related diseases. Further investigation should focus on the interaction between ACNs and gut microbiota, including clarifying the complex metabolic pathway and maximizing the health effects of ACNs.
Collapse
Affiliation(s)
- Bulei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Mas-Bargues C, Borrás C, Alique M. The Contribution of Extracellular Vesicles From Senescent Endothelial and Vascular Smooth Muscle Cells to Vascular Calcification. Front Cardiovasc Med 2022; 9:854726. [PMID: 35498012 PMCID: PMC9051028 DOI: 10.3389/fcvm.2022.854726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is an irreversible pathological process associated with a loss of vascular wall function. This process occurs as a result of aging and age-related diseases, such as cardiovascular and chronic kidney diseases, and leads to comorbidities. During these age-related diseases, the endothelium accumulates senescent cells, which stimulate calcification in vascular smooth muscle cells. Currently, vascular calcification is a silent pathology, and there are no early diagnostic tools. Therefore, by the time vascular calcification is diagnosed, it is usually untreatable. Some mediators, such as oxidative stress, inflammation, and extracellular vesicles, are inducers and promoters of vascular calcification. They play a crucial role during vascular generation and the progression of vascular calcification. Extracellular vesicles, mainly derived from injured endothelial cells that have acquired a senescent phenotype, contribute to calcification in a manner mostly dependent on two factors: (1) the number of extracellular vesicles released, and (2) their cargo. In this review, we present state-of-the-art knowledge on the composition and functions of extracellular vesicles involved in the generation and progression of vascular calcification.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
| | - Consuelo Borrás
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
- *Correspondence: Consuelo Borrás,
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Matilde Alique,
| |
Collapse
|
10
|
Mas-Bargues C, Alique M, Barrús-Ortiz MT, Borrás C, Rodrigues-Díez R. Special Issue “Oxidative Stress in Aging and Associated Chronic Diseases”. Antioxidants (Basel) 2022; 11:antiox11040701. [PMID: 35453386 PMCID: PMC9032276 DOI: 10.3390/antiox11040701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Cristina Mas-Bargues
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
- Correspondence: (C.M.-B.); (M.A.); (M.T.B.-O.); (C.B.); (R.R.-D.)
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Correspondence: (C.M.-B.); (M.A.); (M.T.B.-O.); (C.B.); (R.R.-D.)
| | - Mª Teresa Barrús-Ortiz
- Área de Fisiología, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avenida de Atenas s/n, 28922 Madrid, Spain
- Correspondence: (C.M.-B.); (M.A.); (M.T.B.-O.); (C.B.); (R.R.-D.)
| | - Consuelo Borrás
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
- Correspondence: (C.M.-B.); (M.A.); (M.T.B.-O.); (C.B.); (R.R.-D.)
| | - Raquel Rodrigues-Díez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Hospital La Paz (IdiPAZ), 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 08036 Barcelona, Spain
- Correspondence: (C.M.-B.); (M.A.); (M.T.B.-O.); (C.B.); (R.R.-D.)
| |
Collapse
|
11
|
Figuer A, Alique M, Valera G, Serroukh N, Ceprían N, de Sequera P, Morales E, Carracedo J, Ramírez R, Bodega G. Nuevos mecanismos implicados en el desarrollo de la enfermedad cardiovascular en la enfermedad renal crónica. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
12
|
Buliga-Finis ON, Ouatu A, Badescu MC, Dima N, Tanase DM, Richter P, Rezus C. Beyond the Cardiorenal Syndrome: Pathophysiological Approaches and Biomarkers for Renal and Cardiac Crosstalk. Diagnostics (Basel) 2022; 12:diagnostics12040773. [PMID: 35453821 PMCID: PMC9028970 DOI: 10.3390/diagnostics12040773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiorenal syndrome encompasses complex multifactorial facets and carries significant morbidity and mortality worldwide. The bi-directional relationship between the heart and kidneys, where dysfunction in one organ worsens the function of the other, has been the leading motor for research in the last few years. In the pathophysiological process, small noncoding RNAs, epigenetics, vascular growth factors, oxidative stress, hemodynamic factors, and biomarkers play a pivotal role in the development of cardiorenal syndrome. It is therefore important to elucidate all the mechanisms in order to provide diagnostic and treatments tools. This review summarizes the hemodynamic and non-hemodynamic pathways along with biomarkers that could be the next target for diagnosis, treatment, and prognosis in cardiorenal syndrome.
Collapse
Affiliation(s)
- Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.N.B.-F.); (M.C.B.); (N.D.); (D.M.T.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.N.B.-F.); (M.C.B.); (N.D.); (D.M.T.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
- Correspondence: ; Tel.: +40-722899045
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.N.B.-F.); (M.C.B.); (N.D.); (D.M.T.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.N.B.-F.); (M.C.B.); (N.D.); (D.M.T.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.N.B.-F.); (M.C.B.); (N.D.); (D.M.T.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Patricia Richter
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.N.B.-F.); (M.C.B.); (N.D.); (D.M.T.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| |
Collapse
|