1
|
Du C, Zhu S, Li Y, Yang T, Huang D. Selenium-enriched yeast, a selenium supplement, improves the rheological properties and processability of dough: From the view of yeast metabolism and gluten alteration. Food Chem 2024; 458:140256. [PMID: 38959802 DOI: 10.1016/j.foodchem.2024.140256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
This study investigated the effect mechanism of selenium (Se)-enriched yeast on the rheological properties of dough from the perspective of yeast metabolism and gluten alteration. As the yeast Se content increased, the gas production rate of Se-enriched yeast slowed down, and dough viscoelasticity decreased. The maximum creep of Se-enriched dough increased by 29%, while the final creep increased by 54%, resulting in a softer dough. Non-targeted metabolomics analyses showed that Se inhibited yeast energy metabolism and promoted the synthesis of stress-resistance related components. Glutathione, glycerol, and linoleic acid contributed to the rheological property changes of the dough. The fractions and molecular weight distribution of protein demonstrated that the increase in yeast Se content resulted in the depolymerization of gluten. The intermolecular interactions, fluorescence spectrum and disulfide bond analysis showed that the disruption of intermolecular disulfide bond induced by Se-enriched yeast metabolites played an important role in the depolymerization of gluten.
Collapse
Affiliation(s)
- Chaodong Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Tian Yang
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| |
Collapse
|
2
|
Awasthy C, Hefny ZA, Van Genechten W, Himmelreich U, Van Dijck P. Involvement of 2-deoxyglucose-6-phosphate phosphatases in facilitating resilience against ionic and osmotic stress in Saccharomyces cerevisiae. Microbiol Spectr 2024; 12:e0013624. [PMID: 38953324 PMCID: PMC11302306 DOI: 10.1128/spectrum.00136-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
The Saccharomyces cerevisiae DOG genes, DOG1 and DOG2, encode for 2-deoxyglucose-6-phosphate phosphatases. These enzymes of the haloacid dehalogenase superfamily are known to utilize the non-natural 2-deoxyglucose-6-phosphate as their substrate. However, their physiological substrate and hence their biological role remain elusive. In this study, we investigated their potential role as enzymes in biosynthesizing glycerol through an alternative pathway, which involves the dephosphorylation of dihydroxyacetone phosphate into dihydroxyacetone, as opposed to the classical pathway which utilizes glycerol 3-phosphate. Overexpression of DOG1 or DOG2 rescued the osmotic and ionic stress-sensitive phenotype of gpp1∆ gpp2∆ or gpd1∆ gpd2∆ mutants, both affected in the production of glycerol. While small amounts of glycerol were observed in the DOG overexpression strains in the gpp1∆ gpp2∆ background, no glycerol was detected in the gpd1∆ gpd2∆ mutant background. This indicates that overexpression of the DOG enzymes can rescue the osmosensitive phenotype of the gpd1∆ gpd2∆ mutant independent of glycerol production. We also did not observe a drop in glycerol levels in the gpp1∆ gpp2∆ dog1∆ dog2∆ as compared to the gpp1∆ gpp2∆ mutant, indicating that the Dog enzymes are not involved in glycerol biosynthesis. This indicates that Dog enzymes have a distinct substrate and their function within the cell remains undiscovered. IMPORTANCE Yeast stress tolerance is an important characteristic that is studied widely, not only regarding its fundamental insights but also for its applications within the biotechnological industry. Here, we investigated the function of two phosphatase encoding genes, DOG1 and DOG2, which are induced as part of the general stress response pathway, but their natural substrate in the cells remains unclear. They are known to dephosphorylate the non-natural substrate 2-deoxyglucose-6-phosphate. Here, we show that overexpression of these genes overcomes the osmosensitive phenotype of mutants that are unable to produce glycerol. However, in these overexpression strains, very little glycerol is produced indicating that the Dog enzymes do not seem to be involved in a previously predicted alternative pathway for glycerol production. Our work shows that overexpression of the DOG genes may improve osmotic and ionic stress tolerance in yeast.
Collapse
Affiliation(s)
- Chinmayee Awasthy
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| | | | - Wouter Van Genechten
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC Lab, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| |
Collapse
|
3
|
Afrendi E, Prastya ME, Astuti RI, Wahyuni WT, Batubara I. Bioactivity of the Ethanol Extract of Clove ( Syzygium aromaticum) as Antitoxin. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:3245210. [PMID: 37780095 PMCID: PMC10539087 DOI: 10.1155/2023/3245210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/23/2023] [Accepted: 08/26/2023] [Indexed: 10/03/2023]
Abstract
Toxic compounds can induce the formation of free radicals (reactive oxygen species (ROS)) which can trigger damage and decrease cell viability. Clove (Syzygium aromaticum) contains phenolic compounds that are useful as antioxidants which can reduce ROS toxicity. However, little is known about the antitoxin activity of clove extract. Therefore, this study is aimed at determining the effect of ethanolic clove extract as an antitoxin agent against malachite green (MG) mutagen using the yeast Saccharomyces cerevisiae as a model. The methods used to analyze the ability of ethanolic clove extract as antitoxin were decolorization assay and cell viability test towards MG. The phenol contents of leaf and bud extract were 441.28 and 394.73 mg GAE g-1 extract, respectively. Clove leaf extract has strong antioxidant activity in vitro (IC50 9.29 ppm for 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 29.57 for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)). Liquid chromatography quadrupole-mass spectrometry (LC-MS/MS) analysis showed the presence of 4-O-caffeoylquinic acid and several other bioactive compounds, in which these compounds had bioactivity against toxic compound. The addition of extract reduced the ability of S. cerevisiae to decolorize malachite green but increased cell viability. Based on the data, clove leaf extract shows the potential antitoxin activity. This research should facilitate a preliminary study to investigate the antitoxin agent derived from cloves leaf extract. Further research to analyze the antitoxin mechanism of this extract in yeast model is interesting to do to provide a comprehensive insight into the potential antitoxin agents of clove leaf extract.
Collapse
Affiliation(s)
- Erwin Afrendi
- Department of Biology, Dramaga Campus, IPB University, Bogor 16680, Indonesia
| | - Muhammad Eka Prastya
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) B.J Habibie (PUSPIPTEK) Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Rika Indri Astuti
- Department of Biology, Dramaga Campus, IPB University, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, Bogor Agricultural University, Taman Kencana Street, IPB Taman Kencana Campus, Bogor 16128, Indonesia
| | - Wulan Tri Wahyuni
- Tropical Biopharmaca Research Center, Bogor Agricultural University, Taman Kencana Street, IPB Taman Kencana Campus, Bogor 16128, Indonesia
- Department of Chemistry, Dramaga Campus, IPB University, Bogor 16680, Indonesia
| | - Irmanida Batubara
- Tropical Biopharmaca Research Center, Bogor Agricultural University, Taman Kencana Street, IPB Taman Kencana Campus, Bogor 16128, Indonesia
- Department of Chemistry, Dramaga Campus, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
4
|
Bernat-Camps N, Ebner K, Schusterbauer V, Fischer JE, Nieto-Taype MA, Valero F, Glieder A, Garcia-Ortega X. Enabling growth-decoupled Komagataella phaffii recombinant protein production based on the methanol-free P DH promoter. Front Bioeng Biotechnol 2023; 11:1130583. [PMID: 37034257 PMCID: PMC10076887 DOI: 10.3389/fbioe.2023.1130583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
The current transition towards the circular bioeconomy requires a rational development of biorefineries to sustainably fulfill the present demands. The use of Komagataella phaffii (Pichia pastoris) can meet this challenge, since it has the capability to use crude glycerol as a carbon-source, a by-product from the biodiesel industry, while producing high- and low-added value products. Recombinant protein production (RPP) using K. phaffii has often been driven either by the methanol induced AOX1 promoter (PAOX1) and/or the constitutive GAP promoter (PGAP). In the last years, strong efforts have been focused on developing novel expression systems that expand the toolbox variety of K. phaffii to efficiently produce diverse proteins that requires different strategies. In this work, a study was conducted towards the development of methanol-free expression system based on a heat-shock gene promoter (PDH) using glycerol as sole carbon source. Using this promoter, the recombinant expression is strongly induced in carbon-starving conditions. The classical PGAP was used as a benchmark, taking for both strains the lipase B from Candida antarctica (CalB) as model protein. Titer of CalB expressed under PDH outperformed PGAP controlled expression in shake-flask cultivations when using a slow-release continuous feeding technology, confirming that PDH is induced under pseudo-starving conditions. This increase was also confirmed in fed-batch cultivations. Several optimization rounds were carried out for PDH under different feeding and osmolarity conditions. In all of them the PDH controlled process outperformed the PGAP one in regard to CalB titer. The best PDH approach reached 3.6-fold more specific productivity than PGAP fed-batch at low μ. Compared to the optimum approach for PGAP-based process, the best PDH fed-batch strategy resulted in 2.3-fold higher titer, while the specific productivity was very similar. To summarize, PDH is an inducible promoter that exhibited a non-coupled growth regulation showing high performance, which provides a methanol-free additional solution to the usual growth-coupled systems for RPP. Thus, this novel system emerges as a potential alternative for K. phaffii RPP bioprocess and for revaluing crude glycerol, promoting the transition towards a circular economy.
Collapse
Affiliation(s)
- Núria Bernat-Camps
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | | | | | | | - Miguel Angel Nieto-Taype
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco Valero
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | | | - Xavier Garcia-Ortega
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- *Correspondence: Xavier Garcia-Ortega,
| |
Collapse
|
5
|
Antifungal Effect of Copper Nanoparticles against Fusarium kuroshium, an Obligate Symbiont of Euwallacea kuroshio Ambrosia Beetle. J Fungi (Basel) 2022; 8:jof8040347. [PMID: 35448578 PMCID: PMC9032953 DOI: 10.3390/jof8040347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Copper nanoparticles (Cu-NPs) have shown great antifungal activity against phytopathogenic fungi, making them a promising and affordable alternative to conventional fungicides. In this study, we evaluated the antifungal activity of Cu-NPs against Fusarium kuroshium, the causal agent of Fusarium dieback, and this might be the first study to do so. The Cu-NPs (at different concentrations) inhibited more than 80% of F. kuroshium growth and were even more efficient than a commercial fungicide used as a positive control (cupric hydroxide). Electron microscopy studies revealed dramatic damage caused by Cu-NPs, mainly in the hyphae surface and in the characteristic form of macroconidia. This damage was visible only 3 days post inoculation with used treatments. At a molecular level, the RNA-seq study suggested that this growth inhibition and colony morphology changes are a result of a reduced ergosterol biosynthesis caused by free cytosolic copper ions. Furthermore, transcriptional responses also revealed that the low- and high-affinity copper transporter modulation and the endosomal sorting complex required for transport (ESCRT) are only a few of the distinct detoxification mechanisms that, in its conjunction, F. kuroshium uses to counteract the toxicity caused by the reduced copper ion.
Collapse
|