1
|
Yang Q, Fan Y, Luo S, Liu C, Yuan S. Virus-Induced Gene Silencing (VIGS) in Hydrangea macrophylla and Functional Analysis of HmF3'5'H. PLANTS (BASEL, SWITZERLAND) 2024; 13:3396. [PMID: 39683189 DOI: 10.3390/plants13233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Hydrangea macrophylla, renowned for its large inflorescences and a diverse range of colors, highlights a significant limitation in current gene function research, which is the lack of effective molecular genetic tools. This study utilized a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system to investigate gene function through posttranscriptional gene silencing in H. macrophylla for the first time. The ortholog of phytoene desaturase (PDS) in H. macrophylla, termed HmPDS, was identified. Infection of tissue-cultured seedlings with TRV-HmPDS led to photobleaching of the leaves. Additionally, infection with TRV containing the HmCHS1 fragment in the flowers resulted in decreased anthocyanin production in sepals and a lightening of sepal coloration in the infected flowers. The phenomena and RT-qPCR results proved that the PDS and CHS genes of hydrangea were successfully silenced via the vacuum infiltration method. Furthermore, the introduction of TRV-HmF3'5'H revealed a decrease in delphinidin-3-glucoside content in sepals and caused a color change in the sepals from blue to pink. This study demonstrated that the TRV-VIGS system was successfully established in H. macrophylla and effectively applied to the function analysis of HmF3'5'H.
Collapse
Affiliation(s)
- Qiyu Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youwei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuwen Luo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chun Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suxia Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Coumarin Derivatives from Hydrangea macrophylla and Evaluation of Their Cytotoxic Activity. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Li Q, Zhang Y, Hu J, Yuan B, Zhang P, Wang Y, Jin X, Du L, Jin Y. The Improved Brain-Targeted Drug Delivery of Edaravone Temperature-Sensitive Gels by Ultrasound for γ-ray Radiation-Induced Brain Injury. Pharmaceutics 2022; 14:2281. [PMID: 36365100 PMCID: PMC9698875 DOI: 10.3390/pharmaceutics14112281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Radiation-induced brain injury (RBI) is a common neurological disease caused by ionizing radiation (IR). Edaravone (EDA) is a free radical scavenger, has the potential to treat RBI. EDA loaded temperature-sensitive gels (TSGs) were prepared for subcutaneous injection to improve inconvenient administration of intravenous infusion. RBI mice model was established by irradiation of 60Co γ-ray on head. EDA TSGs could improve spontaneous behavior, learning and memory and anxiety of RBI mice by behavior tests, including the open field test, the novel object recognition test, the elevated plus maze test and the fear conditioning test. The therapeutic effects were enhanced with the assistance of ultrasound. Alleviative pathological changes, decreased the expression of Molondialdehyde (MDA) and Interleukin-6 (IL-6) in the hippocampus of brain, indicated reduced oxidative stress and inflammatory response with the treatment of EDA TSGs and ultrasound. Moreover, ultrasound was superior to the use of EDA TSGs. Safe and effective EDA TSGs were prepared for RBI, and the feasibility of brain-targeted drug delivery enhanced by ultrasound was preliminarily demonstrated in this study.
Collapse
Affiliation(s)
- Qian Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yizhi Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jinglu Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pengcheng Zhang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yaxin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xu Jin
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lina Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Oxidative Damage in Korean Medicine. Antioxidants (Basel) 2022; 11:antiox11030600. [PMID: 35326250 PMCID: PMC8945785 DOI: 10.3390/antiox11030600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
|