1
|
Peng S, Wang J, Farag MA, Salah M, Liu L, Fang Y, Zhang W. Impact of refining on phytochemicals and anti-inflammatory activity of papaya (Carica papaya L.) seed oil in LPS-stimulated THP-1 cells. Food Chem 2024; 459:140299. [PMID: 38986200 DOI: 10.1016/j.foodchem.2024.140299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
This study investigated the changes in phytochemical composition and inflammatory response of crude papaya (Carica papaya L.) seed oil (CPO) and its refined forms (degummed, PDG; deacidified, PDA; decolorized, PDC; deodorized, PDO). Oils were analyzed for their phytochemical composition, oil quality parameters, antioxidant activity, and their inflammatory response in LPS-stimulated THP-1 macrophages. At higher refining degrees, particularly after deacidification, the contents of phytochemicals (sterols, tocopherols, and polyphenols) decreased while oxidation products increased. Both CPO (0.1-1.0 mg/mL) and PDG reduced the secretion and mRNA expression of LPS-stimulated inflammatory cytokines and mediators and also blocked the activation of the NF-κB pathway. PDA, PDC, and PDO showed low anti-inflammatory or even pro-inflammatory activity. Correlation analysis showed that 4 polyphenols and 2 phytosterols were responsible for the oil's anti-inflammatory effects. These findings indicated that moderate refining is suggested for papaya seed oil processing for retaining bioactive ingredients and anti-inflammatory ability.
Collapse
Affiliation(s)
- Siqi Peng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Jing Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562 Cairo, Egypt
| | - Mahmoud Salah
- Mahmoud Salah Department of Environmental Agricultural Science, Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo 11566, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yajing Fang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China..
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China..
| |
Collapse
|
2
|
Cao F, Chen J, Lin ZT, Lin HY, Liu B, Chen ZW, Ma XH, Zhang YH. Chemical Constituents from the Fruit of Melia azedarach and Their Anti-Inflammatory Activity. Antioxidants (Basel) 2024; 13:1338. [PMID: 39594480 PMCID: PMC11591037 DOI: 10.3390/antiox13111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Phytochemical investigations of Melia azedarach fruits have led to the isolation of a novel tirucallane triterpenoid (1), four new limonoids (2-5), and four known limonoids (6-9). Their structures were clarified by comprehensive spectroscopic and spectrometric analyses. The anti-inflammatory activities of isolated compounds were assessed in vitro. Compound 2 exhibited the most potent anti-inflammatory effect, with an IC50 value of 22.04 μM. Additionally, compound 2 attenuated LPS-induced reactive oxygen species (ROS) production and reduced the levels of inflammatory mediators IL-6 and TNF-α. A mechanistic study revealed that limonoid 2 suppresses the expression of iNOS and JAK2 and is implicated in the modulation of the NF-κB signaling cascade, which reveals its anti-inflammatory actions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin-Hua Ma
- Provincial Key Laboratory of Natural Drug Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (F.C.); (J.C.); (Z.-T.L.); (H.-Y.L.); (B.L.); (Z.-W.C.)
| | - Yong-Hong Zhang
- Provincial Key Laboratory of Natural Drug Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (F.C.); (J.C.); (Z.-T.L.); (H.-Y.L.); (B.L.); (Z.-W.C.)
| |
Collapse
|
3
|
Nishi K, Nakatani Y, Ishida M, Kadota A, Sugahara T. Anti-Inflammatory Activity of the Combination of Nobiletin and Docosahexaenoic Acid in Lipopolysaccharide-Stimulated RAW 264.7 Cells: A Potential Synergistic Anti-Inflammatory Effect. Nutrients 2024; 16:2080. [PMID: 38999828 PMCID: PMC11243305 DOI: 10.3390/nu16132080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to investigate a synergistic anti-inflammatory effect of a citrus flavonoid nobiletin and docosahexaenoic acid (DHA), one of n-3 long-chain polyunsaturated fatty acids, in combination. Simultaneous treatment with nobiletin and DHA synergistically inhibited nitric oxide production (combination index < 0.9) by mouse macrophage-like RAW 264.7 cells stimulated with lipopolysaccharide (LPS) without cytotoxicity. On the other hand, the inhibitory effect of nobiletin and DHA in combination on proinflammatory cytokine production was not synergistic. Neither nobiletin nor DHA affected the phagocytotic activity of RAW 264.7 cells stimulated with LPS. Immunoblot analysis revealed that the inhibition potency of DHA on the phosphorylation of ERK and p38 and nuclear translocation of NF-κB is markedly enhanced by simultaneously treating with nobiletin, which may lead to the synergistic anti-inflammatory effect. Overall, our findings show the potential of the synergistic anti-inflammatory effect of nobiletin and DHA in combination.
Collapse
Affiliation(s)
- Kosuke Nishi
- Food and Health Function Research Center, Ehime University, Matsuyama 790-8566, Japan; (K.N.); (M.I.)
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan;
| | - Yuki Nakatani
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan;
| | - Momoko Ishida
- Food and Health Function Research Center, Ehime University, Matsuyama 790-8566, Japan; (K.N.); (M.I.)
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan;
| | | | - Takuya Sugahara
- Food and Health Function Research Center, Ehime University, Matsuyama 790-8566, Japan; (K.N.); (M.I.)
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan;
| |
Collapse
|
4
|
Ruan L, Pan C, Ran X, Wen Y, Lang R, Peng M, Cao J, Yang J. Dual-Delivery Temperature-Sensitive Hydrogel with Antimicrobial and Anti-Inflammatory Brevilin A and Nitric Oxide for Wound Healing in Bacterial Infection. Gels 2024; 10:219. [PMID: 38667638 PMCID: PMC11049419 DOI: 10.3390/gels10040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Bacterial infections impede the wound healing process and can trigger local or systemic inflammatory responses. Therefore, there is an urgent need to develop a dressing with antimicrobial and anti-inflammatory properties to promote the healing of infected wounds. In this study, BA/COs/NO-PL/AL hydrogels were obtained by adding brevilin A (BA) camellia oil (CO) submicron emulsion and nitric oxide (NO) to hydrogels consisting of sodium alginate (AL) and Pluronic F127 (PL). The hydrogels were characterized through dynamic viscosity analysis, differential scanning calorimetry, and rheology. They were evaluated through anti-inflammatory, antimicrobial, and wound healing property analyses. The results showed that BA/COs/NO-PL/AL hydrogels were thermo-responsive and had good ex vivo and in vivo anti-inflammatory activity, and they also exhibited strong antimicrobial activity against methicillin-resistant Staphylococcus aureus Pseudomonas aeruginosa (MRPA) and methicillin-resistant Staphylococcus aureus (MRSA). They were able to effectively promote healing of the infected wound model and reduce inflammation and bacterial burden. H&E and Masson's staining showed that BA/COs/NO-PL/AL hydrogels promoted normal epithelial formation and collagen deposition. In conclusion, BA/COs/NO-PL/AL hydrogels are promising candidates for promoting the healing of infected wounds.
Collapse
Affiliation(s)
- Linghui Ruan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Chengfeng Pan
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Xianting Ran
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Yonglan Wen
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Rui Lang
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Mei Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Jiafu Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
| | - Juan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| |
Collapse
|
5
|
Duan Y, Zhao LJ, Zhou YH, Zhou QZ, Fang AQ, Huang YT, Ma Y, Wang Z, Lu YT, Dai YP, Li SX, Li J. UPLC-Q-TOF-MS, network analysis, and molecular docking to investigate the effect and active ingredients of tea-seed oil against bacterial pathogens. Front Pharmacol 2023; 14:1225515. [PMID: 37745048 PMCID: PMC10513458 DOI: 10.3389/fphar.2023.1225515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Object: This research intended to probe the antibacterial effect and pharmacodynamic substances of Tea-Seed Oil (TSO) through the use of ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) analysis, network analysis, and molecular docking. Methods: The major chemical components in the methanol-extracted fractions of TSO were subjected to UPLC-Q-TOF-MS. Network pharmacology and molecular docking techniques were integrated to investigate the core components, targets, and potential mechanisms of action through which the TSO exert their antibacterial properties. To evaluate the inhibitory effects, the minimum inhibitory concentration and diameter of the bacteriostatic circle were calculated for the potential active ingredients and their equal ratios of combinatorial components (ERCC) against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Moreover, the quantification of the active constituents within TSO was achieved through the utilization of high-performance liquid chromatography (HPLC). Results: The methanol-extracted fractions contained a total of 47 chemical components, predominantly consisting of unsaturated fatty acids and phenolic compounds. The network pharmacology analysis and molecular docking analysis revealed that various components, including gallocatechin, gallic acid, epigallocatechin, theophylline, chlorogenic acid, puerarin, and phlorizin, have the ability to interact with critical core targets such as serine/threonine protein kinase 1 (AKT1), epidermal growth factor receptor (EGFR), a monoclonal antibody to mitogen-activated protein kinase 14 (MAPK14), HSP90AA1, and estrogen receptor 1 (ESR1). Furthermore, these components can modulate the phosphatidylinositol-3-kinase protein kinase B (PI3K-AKT), estrogen, MAPK and interleukin 17 (IL-17) signaling pathways, hereby exerting antibacterial effects. In vitro validation trials have found that seven components, namely gallocatechin, gallic acid, epigallocatechin, theophylline, chlorogenic acid, puerarin, and phloretin, displayed substantial inhibitory effects on E. coli, S. aureus, P. aeruginosa, and C. albicans, and are typically present in tea oil, with a total content ranging from 15.87∼24.91 μg·g-1. Conclusion: The outcomes of this investigation possess the possibility to expand our knowledge base concerning the utilization of TSO, furnish a theoretical framework for the exploration of antibacterial drugs and cosmetics derived from inherently occurring TSO, and establish a robust groundwork for the advancement and implementations of TOS products within clinical settings.
Collapse
Affiliation(s)
- Yan Duan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Juan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yan-Hui Zhou
- Hunan Amazing Grace Biotechnology Co, Ltd, Changsha, China
| | - Qi-Zhi Zhou
- Hunan Amazing Grace Biotechnology Co, Ltd, Changsha, China
| | - Ai-Qing Fang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Ting Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuan Ma
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Ting Lu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Ping Dai
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shun-Xiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Juan Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| |
Collapse
|
6
|
Nie F, Liu L, Cui J, Zhao Y, Zhang D, Zhou D, Wu J, Li B, Wang T, Li M, Yan M. Oligomeric Proanthocyanidins: An Updated Review of Their Natural Sources, Synthesis, and Potentials. Antioxidants (Basel) 2023; 12:antiox12051004. [PMID: 37237870 DOI: 10.3390/antiox12051004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Oligomeric Proanthocyanidins (OPCs), as a class of compounds widely found in plants, are particularly abundant in grapes and blueberries. It is a polymer comprising many different monomers, such as catechins and epicatechins. The monomers are usually linked to each other by two types of links, A-linkages (C-O-C) and B-linkages (C-C), to form the polymers. Numerous studies have shown that compared to high polymeric procyanidins, OPCs exhibit antioxidant properties due to the presence of multiple hydroxyl groups. This review describes the molecular structure and natural source of OPCs, their general synthesis pathway in plants, their antioxidant capacity, and potential applications, especially the anti-inflammatory, anti-aging, cardiovascular disease prevention, and antineoplastic functions. Currently, OPCs have attracted much attention, being non-toxic and natural antioxidants of plant origin that scavenge free radicals from the human body. This review would provide some references for further research on the biological functions of OPCs and their application in various fields.
Collapse
Affiliation(s)
- Fanxuan Nie
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lili Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jiamin Cui
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuquan Zhao
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dawei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dinggang Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinfeng Wu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
7
|
Ho MJ, Park HJ, Kang MJ. Neutral Oil-Incorporated Liposomal Nanocarrier for Increased Skin Delivery of Ascorbic Acid. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2294. [PMID: 36984174 PMCID: PMC10051652 DOI: 10.3390/ma16062294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In this study, a neutral oil-incorporated liposomal system (lipo-oil-some, LOS) was designed to improve the skin absorption of ascorbic acid (Vit C), and the effects of an edge activator and neutral oil on the skin absorption of Vit C were evaluated. As components of the LOS system, sodium deoxycholate, polysorbate 80, and cholesterol were screened as edge activators, and camellia oil, tricaprylin, and grapeseed oil were employed as neutral oils. The LOS systems prepared by the ethanol injection method were spherical in shape, 130-350 nm in size, and had 4-27% Vit C loading efficiency (%). In a skin absorption study using a Franz diffusion cell mounted with porcine skin, the LOS system prepared with sodium deoxycholate (10 w/w% of phospholipid) exhibited 1.2-and 2.9-fold higher absorption than those prepared with polysorbate 80 and cholesterol, respectively. Moreover, the type of neutral oil had a marked effect on the absorption of Vit C; the liposomal system containing camellia oil provided 1.3 to 1.8 times higher flux (45.4 μg/cm2∙h) than vesicles with tricaprylin or grapeseed oil, respectively. The optimized lipid nanocarrier is expected to be a promising tool for promoting the skin absorption of Vit C and improving its dermatological functions.
Collapse
|
8
|
Andersone A, Janceva S, Lauberte L, Ramata-Stunda A, Nikolajeva V, Zaharova N, Rieksts G, Telysheva G. Anti-Inflammatory, Anti-Bacterial, and Anti-Fungal Activity of Oligomeric Proanthocyanidins and Extracts Obtained from Lignocellulosic Agricultural Waste. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020863. [PMID: 36677921 PMCID: PMC9861313 DOI: 10.3390/molecules28020863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
It has now been proven that many pathogens that cause infections and inflammation gradually mutate and become resistant to antibiotics. Chemically synthesized drugs treating inflammation most often only affect symptoms, but side effects could lead to the failure of human organs' functionality. On the other hand, plant-derived natural compounds have a long-term healing effect. It was shown that sea buckthorn (SBT) twigs are a rich source of biologically active compounds, including oligomeric proanthocyanidins (PACs). This study aimed to assess the anti-pathogenic and anti-inflammatory activity of water/ethanol extracts and PACs obtained from the lignocellulosic biomass of eight SBT cultivars. The anti-pathogenic activity of extracts and PACs was studied against pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus cereus and fungus Candida albicans in 96-well plates by the two-fold serial broth microdilution method. The anti-bacterial activity of purified PACs was 4 and 10 times higher than for water and water/ethanol extracts, respectively, but the extracts had higher anti-fungal activity. Purified PACs showed the ability to reduce IL-8 and IL-6 secretion from poly-I:C-stimulated peripheral blood mononuclear cells. For the extracts and PACs of SBT cultivar 'Maria Bruvele' in the concentration range 0.0313-4.0 mg/mL, no toxic effect was observed.
Collapse
Affiliation(s)
- Anna Andersone
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Sarmite Janceva
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Correspondence: ; Tel.: +371-25148850
| | - Liga Lauberte
- Laboratory of Finished Dosage Forms, Riga Stradins University, LV-1007 Riga, Latvia
| | - Anna Ramata-Stunda
- Faculty of Biology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
| | - Vizma Nikolajeva
- Faculty of Biology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
| | - Natalija Zaharova
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Gints Rieksts
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Laboratory of Heat and Mass Transfer, The Institute of Physics of University of Latvia, LV-2169 Salaspils, Latvia
| | - Galina Telysheva
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
| |
Collapse
|
9
|
Wu Z, Tan X, Zhou J, Yuan J, Yang G, Li Z, Long H, Yi Y, Lv C, Zeng C, Qin S. Discovery of New Triterpenoids Extracted from Camellia oleifera Seed Cake and the Molecular Mechanism Underlying Their Antitumor Activity. Antioxidants (Basel) 2022; 12:antiox12010007. [PMID: 36670869 PMCID: PMC9854776 DOI: 10.3390/antiox12010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Theasaponin derivatives, which are reported to exert antitumor activity, have been widely reported to exist in edible plants, including in the seed cake of Camellia oleifera (C.), which is extensively grown in south of China. The purpose of this study was to isolate new theasaponin derivatives from C. seed cake and explore their potential antitumor activity and their underlying molecular mechanism. In the present study, we first isolated and identified four theasaponin derivatives (compounds 1, 2, 3, and 4) from the total aglycone extract of the seed cake of Camellia oleifera by utilizing a combination of pre-acid-hydrolysis treatment and activity-guided isolation. Among them, compound 1 (C1) and compound 4 (C4) are newly discovered theasaponins that have not been reported before. The structures of these two new compounds were characterized based on comprehensive 1D and 2D NMR spectroscopy and high-resolution mass spectrometry, as well as data reported in the literature. Secondly, the cytotoxicity and antitumor property of the above four purified compounds were evaluated in selected typical tumor cell lines, Huh-7, HepG2, Hela, A549, and SGC7901, and the results showed that the ED50 value of C4 ranges from 1.5 to 11.3 µM, which is comparable to that of cisplatinum (CDDP) in these five cell lines, indicating that C4 has the most powerful antitumor activity among them. Finally, a preliminary mechanistic investigation was performed to uncover the molecular mechanism underlying the antitumor property of C4, and the results suggested that C4 may trigger apoptosis through the Bcl-2/Caspase-3 and JAK2/STAT3 pathways, and stimulate cell proliferation via the NF-κB/iNOS/COX-2 pathway. Moreover, it was surprising to find that C4 can inhibit the Nrf2/HO-1 pathway, which indicates that C4 has the potency to overcome the resistance to cancer drugs. Therefore, C1 and C4 are two newly identified theasaponin derivatives with antitumor activity from the seed cake of Camellia oleifera, and C4 is a promising antitumor candidate not only for its powerful antitumor activity, but also for its ability to function as an Nrf2 inhibitor to enhance the anticancer drug sensitivity.
Collapse
Affiliation(s)
- Zelong Wu
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- School of Economics and Management, Hunan Open University, Changsha 410004, China
| | - Xiaofeng Tan
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (X.T.); (S.Q.)
| | - Junqin Zhou
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jun Yuan
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guliang Yang
- National Engineering Laboratory for Rice and Byproducts Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ze Li
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongxu Long
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuhang Yi
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenghao Lv
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chaoxi Zeng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Si Qin
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (X.T.); (S.Q.)
| |
Collapse
|
10
|
Shawahna R. Effects of a grapeseed oil (Vitis vinifera L.) loaded dermocosmetic nanoemulgel on biophysical parameters of facial skin: A split-face, blinded, placebo-controlled study. J Cosmet Dermatol 2022; 21:5730-5738. [PMID: 35713012 DOI: 10.1111/jocd.15161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Worldwide, grapes (Vitis vinifera L.; family: Vitaceae) are one of the most important fruits. Grapeseed oil is rich in bioactive constituents that could be beneficial to the health and aesthetic features of human skin. OBJECTIVE This study was conducted to evaluate the effects of a novel grapeseed oil-loaded dermocosmetic nanoemulgel on biophysical parameters of facial skin. METHODS This was a split-face, blinded, placebo-controlled study. A novel grapeseed oil-loaded dermocosmetic nanoemulgel was developed, and its effects on the biophysical parameters of the facial skin were evaluated and compared to those of a placebo formulation on the cheeks of 15 healthy volunteers. Melanin, erythema, sebum production, fine and large facial pores, moisture, and elasticity levels were measured using Mexameter®, Corneometer®, Sebumeter®, Cutometer®, and VisioFace®. Measurements were made on weekly basis for 12 weeks. RESULTS Compared to the placebo, the novel grapeseed oil-loaded dermocosmetic nanoemulgel received significantly higher sensory scores with regard to appearance, color, odor, consistency, adhesion, sensation, cohesiveness, and spreadability (p-value < 0.05). Additionally, the novel nanoemulgel continuously and significantly reduced skin melanin, erythema, sebum production, and fine and large pores (p-value < 0.05). On the contrary, the novel nanoemulgel continuously and significantly increased skin moisture contents and elasticity (p-value < 0.05). CONCLUSION The novel grapeseed oil-loaded dermocosmetic nanoemulgel had attractive cosmetic attributes that could be useful for improving imperfections of the human skin. Future studies are still needed to test and evaluate the benefits of this novel grapeseed oil-loaded dermocosmetic nanoemulgel in disease conditions.
Collapse
Affiliation(s)
- Ramzi Shawahna
- Department of Physiology, Pharmacology and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.,An-Najah BioSciences Unit, Centre for Poisons Control, Chemical and Biological Analyses, An-Najah National University, Nablus, Palestine
| |
Collapse
|
11
|
Hu YL, Xu TQ, Cheng HY, Liu Y, Zhang X, Zhang YB, Zhou GX. Undescribed abietane-type diterpenoids and oleanane-type triterpenoids from the stem and branch of Tripterygium wilfordii. PHYTOCHEMISTRY 2022; 201:113258. [PMID: 35654136 DOI: 10.1016/j.phytochem.2022.113258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Six undescribed abietane-type diterpenoids (tripterydinoids A-F) and five undescribed oleanane-type triterpenoids (tripterytrinoids A-E) were obtained and determined from the stem and branch of Tripterygium wilfordii Hook. f. (Celastraceae). Tripterydinoids A-C possessed the abietane-type diterpenoid skeleton with rare 8, 9-epoxy ring. The structures of undescribed compounds were established by extensive spectroscopic studies [HRESIMS, 1D/2D-NMR and electronic circular dichroism (ECD) calculation]. The absolute configurations of tripterydinoids A, B, E and tripterytrinoid A were defined by X-ray crystallographic analyses. Bioactivity screening indicated that tripterydinoids A-C exhibited potent inhibitory effects against NO release in LPS-activated RAW 264.7 macrophages with IC50 values of 6.93, 4.46 and 2.98 μM, respectively. Meanwhile, tripterydinoids A-D and tripterytrinoids B, C showed moderate and selective cytotoxicities against five human tumor cell lines (A375, Huh7, MCF-7, HCT-116 and NCI-H460).
Collapse
Affiliation(s)
- Ya-Lin Hu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Tian-Qi Xu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Huai-Yu Cheng
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xia Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yu-Bo Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guang-Xiong Zhou
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|