1
|
Boaro A, Ramos LD, Bastos EL, Bechara EJH, Bartoloni FH. Comparison of the mechanisms of DNA damage following photoexcitation and chemiexcitation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113070. [PMID: 39657451 DOI: 10.1016/j.jphotobiol.2024.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
In this review, we compare the mechanisms and consequences of electronic excitation of DNA via photon absorption or photosensitization, as well as by chemically induced generation of excited states. The absorption of UV radiation by DNA is known to produce cyclobutane pyrimidine dimers (CPDs) and thymine pyrimidone photoproducts. Photosensitizers are known to enable such transformations using UV-A and visible light by generating triplet species able to transfer energy to DNA. Conversely, chemiexcitation of DNA is a process related to the formation of high energy peroxides whose decomposition leads to triplet excited species. In practice, both photoexcitation and chemiexcitation produce reactive excited species able to promote some DNA nucleobases to their excited state. We discuss the effect of epigenetic methylation modifications of DNA and the role of endogenous and exogenous photosensitizers on the formation of DNA photoproducts via triplet-triplet energy transfer as well as oxidative DNA damages. The mechanisms of pathogenic pathway involving the generation of CPDs via chemiexcitation (namely dark CPDs, dCPDs) are discussed and compared with photoexcitation considering their spatiotemporal characteristics. Recognition of the multifaceted noxious effects of UV radiation opens new horizons for the development of effective electronically excited quenchers, thereby providing a crucial step toward mitigating DNA photodamage.
Collapse
Affiliation(s)
- Andreia Boaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil; Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 05403-000, Brazil.
| | - Luiz Duarte Ramos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil
| | - Erick Leite Bastos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Fernando Heering Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil
| |
Collapse
|
2
|
Law SK, Liu CWC, Tong CWS, Au DCT. Potential of Resveratrol to Combine with Hydrogel for Photodynamic Therapy against Bacteria and Cancer-A Review. Biomedicines 2024; 12:2095. [PMID: 39335608 PMCID: PMC11428695 DOI: 10.3390/biomedicines12092095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and cancers are important issues in public health around the world. Currently, Western medicine is the most suitable approach when dealing with these issues. "Antibiotics" and "Corticosteroids" are the Western medicines used for bacterial infection. "Chemotherapy drugs", "surgery", and "radiotherapy" are common techniques used to treat cancer. These are conventional treatments with many side effects. PDT is a non-invasive and effective therapy for bacterial infection and cancer diseases. METHODS Nine electronic databases, namely WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), were searched to conduct this literature review, without any regard to language constraints. Studies focusing on the photodynamic actions of hydrogel and Resveratrol were included that evaluated the effect of PDT against bacteria and cancer. All eligible studies were analyzed and summarized in this review. RESULTS Resveratrol has antibacterial and anticancer effects. It can also act as PS in PDT or adjuvant but has some limitations. This is much better when combined with a hydrogel to enhance the effectiveness of PDT in the fight against bacteria and cancer. CONCLUSIONS Resveratrol combined with hydrogel is possible for PDT treatment in bacteria and cancer. They are compatible and reinforce each other to increase the effectiveness of PDT. However, much more work is required, such as cytotoxicity safety assessments of the human body and further enhancing the effectiveness of PDT in different environments for future investigations.
Collapse
Affiliation(s)
| | | | | | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong, China; (C.W.C.L.); (C.W.S.T.)
| |
Collapse
|
3
|
Mokrzyński K, Krzysztyńska-Kuleta O, Wojtala M, Wnuk D, Sarna M, Sarna T. Can l-ascorbic acid and trans-resveratrol protect HaCaT cells from fine particulate matter toxicity? Photochem Photobiol 2024; 100:172-189. [PMID: 37365883 DOI: 10.1111/php.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Continuous exposure of human skin to air pollution can result in a range of undesirable skin conditions. In our recent study, UV and visible light were found to increase cytotoxicity of fine particulate matter (PM2.5 ) against human keratinocytes. Since it is impossible to avoid exposure of human skin to PM2.5 , effective strategies are needed to reduce their damaging effects. l-ascorbic acid and resveratrol were tested as potential topical agents against pollution-related skin impairment. Although these agents were previously found to ameliorate PM-dependent damage, the effect of light and seasonal variation of particles were not previously studied. EPR spin-trapping, DPPH assay, and singlet oxygen phosphorescence were used to determine the scavenging activities of the antioxidants. MTT, JC-10 and iodometric assays were used to analyze the effect on PM2.5 -induced cytotoxicity, mitochondrial damage and oxidation of lipids. Live-cell imaging was employed to examine wound-healing properties of cells. Light-induced, PM2.5 -mediated oxidative damage was examined by immunofluorescent staining. Both antioxidants effectively scavenged free radicals and singlet oxygen produced by PM2.5 , reduced cell death and prevented oxidative damage to HaCaT cells. l-ascorbic acid and resveratrol, especially when applied in combination, can protect HaCaT cells against the dark and light induced toxicity of PM2.5 .
Collapse
Affiliation(s)
- Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Olga Krzysztyńska-Kuleta
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wojtala
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Ghosh SK, He L, Tang Z, Comito RJ. Selective and Functional-Group-Tolerant Photoalkylation of Imines by Energy-Transfer Photocatalysis. J Org Chem 2023; 88:15209-15217. [PMID: 37875007 DOI: 10.1021/acs.joc.3c01722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Basic amines show broad bioactivity and remain a promising source of new medicines. The direct photoalkylation of imines offers a promising strategy for complex amines. However, the lack of efficient imine photoreactivity hinders this reaction and remains a fundamental limitation in organic photochemistry. We report an efficient photoalkylation of imines that provides primary amines directly without protecting or leaving groups. The transformation effects C-H addition across N-H imines under energy-transfer photocatalysis by a ketone. Our method is distinguished from organometallic, metal-catalyzed, and photoredox approaches to imine alkylation by its lack of protecting groups and its broad scope, which includes unactivated alkanes, protic substrates, basic amines, heterocycles, and ketone imines. We highlight this scope through the condensation and alkylation of two pharmaceutical ketones, providing complex amines succinctly. Our mechanistic analysis supports a three-step process, involving hydrogen-atom transfer to an imine triplet excited state, intersystem crossing, and radical recombination, with photocatalytic enhancement through energy transfer. We further show that N-H imines are more photoreactive than N-substituted imines, a distinction partially explained by sterics and side reactions. To fully explain this distinction, we introduce the thermodynamic parameter excited-state hydrogen-atom affinity, which is highly effective at predicting the photoreactivity of imines.
Collapse
Affiliation(s)
- Subrata K Ghosh
- The University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| | - Lizhe He
- The University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| | - Zilu Tang
- The University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| | - Robert J Comito
- The University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| |
Collapse
|
5
|
Abstract
Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.
Collapse
Affiliation(s)
- Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Frank H Quina
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
7
|
Meyer TA, Swindell WR, Chaudhuri RK. Acetyl Zingerone: A Photostable Multifunctional Skincare Ingredient That Combats Features of Intrinsic and Extrinsic Skin Aging. Antioxidants (Basel) 2023; 12:1168. [PMID: 37371898 DOI: 10.3390/antiox12061168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The cumulative damage skin sustains from exposure to environmental stressors throughout life exerts significant effects on skin aging and cancer development. One of the main ways by which environmental stressors mediate their effects within skin is through induction of reactive oxygen species (ROS). In this review, we chronicle the multiple properties by which acetyl zingerone (AZ) as a skincare ingredient can benefit skin (1) by helping manage overproduction of ROS through multiple routes as an antioxidant, physical quencher and selective chelator, (2) by fortifying protection after UV exposure ends to prevent the type of epidermal DNA damage that correlates with development of skin cancer, (3) by modulating matrisome activity and nurturing the integrity of the extracellular matrix (ECM) within the dermis and (4) through its proficient ability to neutralize singlet oxygen, by stabilizing the ascorbic acid precursor tetrahexyldecyl ascorbate (THDC) in the dermal microenvironment. This activity improves THDC bioavailability and may blunt pro-inflammatory effects of THDC, such as activation of type I interferon signaling. Moreover, AZ is photostable and can sustain its properties during UV exposure, in contrast to α-tocopherol. All these properties of AZ translate into measurable clinical benefits to improve the visual appearance of photoaged facial skin and to strengthen the skin's own defenses against sun damage.
Collapse
Affiliation(s)
| | - William R Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
8
|
Ramos LD, Gomes TMV, Stevani CV, Bechara EJH. Mining reactive triplet carbonyls in biological systems. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 243:112712. [PMID: 37116363 DOI: 10.1016/j.jphotobiol.2023.112712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/30/2023]
Abstract
Aliphatic triplet carbonyls can be treated as short-lived radicals, since both species share similar reactions such as hydrogen atom abstraction, cyclization, addition, and isomerization. Importantly, enzyme-generated triplet carbonyls excite triplet molecular oxygen to the highly reactive, electrophilic singlet state by resonance energy transfer, which can react with proteins, lipids, and DNA. Carbonyl triplets, singlet oxygen, and radicals are endowed with the potential to trigger both normal and pathological responses. In this paper, we present a short review of easy, fast, and inexpensive preliminary tests for the detection of transient triplet carbonyls in chemical and biological systems. This paper covers direct and indirect methods to look for triplet carbonyls based on their spectral distribution of chemiluminescence, photoproduct analysis, quenching of light emission by conjugated dienes, and enhancement of light emission by the sensitizer 9,10-dibromoanthracence-2-sulfonate ion (DBAS).
Collapse
Affiliation(s)
- Luiz D Ramos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Thiago M V Gomes
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Mavridi-Printezi A, Menichetti A, Mordini D, Amorati R, Montalti M. Recent Applications of Melanin-like Nanoparticles as Antioxidant Agents. Antioxidants (Basel) 2023; 12:antiox12040863. [PMID: 37107238 PMCID: PMC10135245 DOI: 10.3390/antiox12040863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Nanosized antioxidants are highly advantageous in terms of versatility and pharmacokinetics, with respect to conventional molecular ones. Melanin-like materials, artificial species inspired by natural melanin, combine recognized antioxidant (AOX) activity with a unique versatility of preparation and modification. Due to this versatility and documented biocompatibility, artificial melanin has been incorporated into a variety of nanoparticles (NP) in order to give new platforms for nanomedicine with enhanced AOX activity. In this review article, we first discuss the chemical mechanisms behind the AOX activity of materials in the context of the inhibition of the radical chain reaction responsible for the peroxidation of biomolecules. We also focus briefly on the AOX properties of melanin-like NP, considering the effect of parameters such as size, preparation methods and surface functionalization on them. Then, we consider the most recent and relevant applications of AOX melanin-like NPs that are able to counteract ferroptosis and be involved in the treatment of important diseases that affect, e.g., the cardiovascular and nervous systems, as well as the kidneys, liver and articulations. A specific section will be dedicated to cancer treatment, since the role of melanin in this context is still very debated. Finally, we propose future strategies in AOX development for a better chemical understanding of melanin-like materials. In particular, the composition and structure of these materials are still debated, and they present a high level of variability. Thus, a better understanding of the mechanism behind the interaction of melanin-like nanostructures with different radicals and highly reactive species would be highly advantageous for the design of more effective and specific AOX nano-agents.
Collapse
Affiliation(s)
| | - Arianna Menichetti
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Dario Mordini
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Montalti
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| |
Collapse
|
10
|
Gonçalves LCP, Angelé-Martinez C, Premi S, Palmatier MA, Prado FM, Di Mascio P, Bastos EL, Brash DE. Chemiexcited Neurotransmitters and Hormones Create DNA Photoproducts in the Dark. ACS Chem Biol 2023; 18:484-493. [PMID: 36775999 PMCID: PMC10276651 DOI: 10.1021/acschembio.2c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In DNA, electron excitation allows adjacent pyrimidine bases to dimerize by [2 + 2] cycloaddition, creating chemically stable but lethal and mutagenic cyclobutane pyrimidine dimers (CPDs). The usual cause is ultraviolet radiation. Alternatively, CPDs can be made in the dark (dCPDs) via chemically mediated electron excitation of the skin pigment melanin, after it is oxidized by peroxynitrite formed from the stress-induced radicals superoxide and nitric oxide. We now show that the dark process is not limited to the unusual structural molecule melanin: signaling biomolecules such as indolamine and catecholamine neurotransmitters and hormones can also be chemiexcited to energy levels high enough to form dCPDs. Oxidation of serotonin, dopamine, melatonin, and related biogenic amines by peroxynitrite created triplet-excited species, evidenced by chemiluminescence, energy transfer to a triplet-state reporter, or transfer to O2 resulting in singlet molecular oxygen. For a subset of these signaling molecules, triplet states created by peroxynitrite or peroxidase generated dCPDs at levels comparable to ultraviolet (UV). Neurotransmitter catabolism by monoamine oxidase also generated dCPDs. These results reveal a large class of signaling molecules as electronically excitable by biochemical reactions and thus potential players in deviant mammalian metabolism in the absence of light.
Collapse
Affiliation(s)
- Leticia C. P. Gonçalves
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
- Present address: Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Carlos Angelé-Martinez
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | - Sanjay Premi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
- Present address: Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Meg A. Palmatier
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | - Fernanda Manso Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Erick L. Bastos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520-8028, USA
| |
Collapse
|
11
|
de Faria Lopes L, Jandova J, Justiniano R, Perer J, Baptista MS, Wondrak GT. The Glycolysis-derived α-Dicarbonyl Metabolite Methylglyoxal is a UVA-photosensitizer Causing the Photooxidative Elimination of HaCaT Keratinocytes with Induction of Oxidative and Proteotoxic Stress Response Gene Expression †. Photochem Photobiol 2023; 99:826-834. [PMID: 36109156 PMCID: PMC10321145 DOI: 10.1111/php.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/28/2022] [Indexed: 12/01/2022]
Abstract
Cellular oxidative stress contributes to solar ultraviolet (UV) radiation-induced skin photoaging and photocarcinogenesis. Light-driven electron and energy transfer reactions involving non-DNA chromophores are a major source of reactive oxygen species (ROS) in skin, and the molecular identity of numerous endogenous chromophores acting as UV-photosensitizers has been explored. Methylglyoxal (MG), a glycolytic byproduct bearing a UV-active α-dicarbonyl-chromophore, is generated under metabolic conditions of increased glycolytic flux, associated with posttranslational protein adduction in human tissue. Here, we undertook a photophysical and photochemical characterization of MG substantiating its fluorescence properties (Stokes shift), phosphorescence lifetime, and quantum yield of singlet oxygen (1 O2 ) formation. Strikingly, upon UV-excitation (290 nm), a clear emission (around 490 nm) was observed (phosphorescence-lifetime: 224.2 milliseconds). At micromolar concentrations, MG acts as a UVA-photosensitizer targeting human HaCaT-keratinocytes inducing photooxidative stress and caspase-dependent cell death substantiated by zVADfmk-rescue and Alexa-488 caspase-3 flow cytometry. Transcriptomic analysis indicated that MG (photoexcited by noncytotoxic doses of UVA) elicits expression changes not observable upon isolated MG- or UVA-treatment, with upregulation of the proteotoxic (CRYAB, HSPA6) and oxidative (HMOX1) stress response. Given the metabolic origin of MG and its role in human pathology, future investigations should address the potential involvement of MG-photosensitizer activity in human skin photodamage.
Collapse
Affiliation(s)
- Lohanna de Faria Lopes
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jana Jandova
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Rebecca Justiniano
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Jessica Perer
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Maurício S. Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
12
|
Brash DE, Goncalves LCP. Chemiexcitation: Mammalian Photochemistry in the Dark †. Photochem Photobiol 2023; 99:251-276. [PMID: 36681894 PMCID: PMC10065968 DOI: 10.1111/php.13781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/18/2023] [Indexed: 01/23/2023]
Abstract
Light is one way to excite an electron in biology. Another is chemiexcitation, birthing a reaction product in an electronically excited state rather than exciting from the ground state. Chemiexcited molecules, as in bioluminescence, can release more energy than ATP. Excited states also allow bond rearrangements forbidden in ground states. Molecules with low-lying unoccupied orbitals, abundant in biology, are particularly susceptible. In mammals, chemiexcitation was discovered to transfer energy from excited melanin, neurotransmitters, or hormones to DNA, creating the lethal and carcinogenic cyclobutane pyrimidine dimer. That process was initiated by nitric oxide and superoxide, radicals triggered by ultraviolet light or inflammation. Several poorly understood chronic diseases share two properties: inflammation generates those radicals across the tissue, and cells that die are those containing melanin or neuromelanin. Chemiexcitation may therefore be a pathogenic event in noise- and drug-induced deafness, Parkinson's disease, and Alzheimer's; it may prevent macular degeneration early in life but turn pathogenic later. Beneficial evolutionary selection for excitable biomolecules may thus have conferred an Achilles heel. This review of recent findings on chemiexcitation in mammalian cells also describes the underlying physics, biochemistry, and potential pathogenesis, with the goal of making this interdisciplinary phenomenon accessible to researchers within each field.
Collapse
Affiliation(s)
- Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA
| | - Leticia C. P. Goncalves
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| |
Collapse
|
13
|
Srivastava J, Young MM, Yadav VK, Phadatare PR, Meyer TA, Chaudhuri RK, Premi S. The Role of Acetyl Zingerone and Its Derivatives in Inhibiting UV-Induced, Incident, and Delayed Cyclobutane Pyrimidine Dimers. Antioxidants (Basel) 2023; 12:antiox12020278. [PMID: 36829837 PMCID: PMC9952391 DOI: 10.3390/antiox12020278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Cyclobutane pyrimidine dimers (CPDs) are ultraviolet radiation (UV)-induced carcinogenic DNA photoproducts that lead to UV signature mutations in melanoma. Previously, we discovered that, in addition to their incident formation (iCPDs), UV exposure induces melanin chemiexcitation (MeCh), where UV generates peroxynitrite (ONOO-), which oxidizes melanin into melanin-carbonyls (MCs) in their excited triplet state. Chronic MeCh and energy transfer by MCs to DNA generates CPDs for several hours after UV exposure ends (dark CPD, dCPDs). We hypothesized that MeCh and the resulting dCPDs can be inhibited using MeCh inhibitors, and MC and ONOO- scavengers. Here, we investigated the efficacy of Acetyl Zingerone (AZ), a plant-based phenolic alkanone, and its chemical analogs in inhibiting iCPDs and dCPDs in skin fibroblasts, keratinocytes, and isogenic pigmented and albino melanocytes. While AZ and its methoxy analog, 3-(4-Methoxy-benzyl)-Pentane-2,4-dione (MBPD) completely inhibited the dCPDs, MBPD also inhibited ~50% of iCPDs. This suggests the inhibition of ~80% of total CPDs at any time point post UV exposure by MBPD, which is markedly significant. MBPD downregulated melanin synthesis, which is indispensable for dCPD generation, but this did not occur with AZ. Meanwhile, AZ and MBPD both upregulated the expression of nucleotide excision repair (NER) pathways genes including Xpa, Xpc, and Mitf. AZ and its analogs were non-toxic to the skin cells and did not act as photosensitizers. We propose that AZ and MBPD represent "next-generation skin care additives" that are safe and effective for use not only in sunscreens but also in other specialized clinical applications owing to their extremely high efficacy in blocking both iCPDs and dCPDs.
Collapse
Affiliation(s)
- Jyoti Srivastava
- Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Montana M. Young
- Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Vipin Kumar Yadav
- Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Pravin R. Phadatare
- Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | | | - Ratan K. Chaudhuri
- SYTHEON, 10 Waterview Blvd, Parsippany, NJ 07054, USA
- Correspondence: (R.K.C.); (S.P.)
| | - Sanjay Premi
- Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
- Correspondence: (R.K.C.); (S.P.)
| |
Collapse
|
14
|
Weiss TJ, Crawford ER, Posada V, Rahman H, Liu T, Murphy BM, Arnold TE, Gray S, Hu Z, Hennessey RC, Yu L, D'Orazio JA, Burd CJ, Zippin JH, Grossman D, Burd CE. Cell-intrinsic melanin fails to protect melanocytes from ultraviolet-mutagenesis in the absence of epidermal melanin. Pigment Cell Melanoma Res 2023; 36:6-18. [PMID: 36148789 PMCID: PMC10092168 DOI: 10.1111/pcmr.13070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022]
Abstract
Melanin is a free-radical scavenger, antioxidant, and broadband absorber of ultraviolet (UV) radiation which protects the skin from environmental carcinogenesis. However, melanin synthesis and UV-induced reactive melanin species are also implicated in melanocyte genotoxicity. Here, we attempted to reconcile these disparate functions of melanin using a UVB-sensitive, NRAS-mutant mouse model, TpN. We crossed TpN mice heterozygous for an inactivating mutation in Tyrosinase to produce albino and black littermates on a C57BL/6J background. These animals were then exposed to a single UVB dose on postnatal day three when keratinocytes in the skin have yet to be melanized. Approximately one-third (35%) of black mice were protected from UVB-accelerated tumor formation. However, melanoma growth rates, tumor mutational burdens, and gene expression profiles were similar in melanomas from black and albino mice. Skin from albino mice contained more cyclobutane pyrimidine dimer (CPD) positive cells than black mice 1-h post-irradiation. However, this trend gradually reversed over time with CPDs becoming more prominent in black than albino melanocytes at 48 h. These results show that in the absence of epidermal pigmentation, melanocytic melanin limits the tumorigenic effects of acute UV exposure but fails to protect melanocytes from UVB-induced mutagenesis.
Collapse
Affiliation(s)
- Tirzah J Weiss
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Emma R Crawford
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Valentina Posada
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Hafeez Rahman
- The University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, USA.,Department of Dermatology, The University of Utah, Salt Lake City, Utah, USA.,Department of Oncological Sciences, The University of Utah, Salt Lake City, Utah, USA
| | - Tong Liu
- The University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, USA.,Department of Dermatology, The University of Utah, Salt Lake City, Utah, USA.,Department of Oncological Sciences, The University of Utah, Salt Lake City, Utah, USA
| | - Brandon M Murphy
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Tiffany E Arnold
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Shannon Gray
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Zhexuan Hu
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Rebecca C Hennessey
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - John A D'Orazio
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Craig J Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan H Zippin
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA.,Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA.,Joan and Sanford I. Weill Medical College of Cornell University, Englander Institute for Precision Medicine, New York, New York, USA
| | - Douglas Grossman
- The University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, USA.,Department of Dermatology, The University of Utah, Salt Lake City, Utah, USA.,Department of Oncological Sciences, The University of Utah, Salt Lake City, Utah, USA
| | - Christin E Burd
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|