1
|
Knox N, Yasrebi A, Caramico D, Wiersielis K, Samuels BA, Roepke TA. The Interaction Of Diet-Induced Obesity And Chronic Stress In A Mouse Model Of Menopause. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622997. [PMID: 39605499 PMCID: PMC11601223 DOI: 10.1101/2024.11.11.622997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Menopause is characterized by the cessation of ovarian hormone production. During postmenopause, cisgender women face increased risks of obesity, cognitive decline, and mood disorder. Mood disorders are associated with exposure to chronic stress. We investigated the combined effects of a high-fat diet (HFD) and chronic stress exposure in a mouse model of menopause using 4-vinylcyclohexene diepoxide (VCD), a selective ovotoxicant that gradually depletes ovarian follicles and hormones. Starting at 6 months, 82 female WT C57BL/6J mice received saline or VCD (130 mg/kg i.p.) 5 days per week for 3 weeks. One month after injection, mice were fed either low-fat diet (LFD) or HFD for 8 weeks followed by 6 weeks of chronic variable mild stress (CVMS). Post-CVMS, mice were either processed for gene expression of the anterodorsal BNST or behavior tests to assess cognitive and anxiety-related behaviors. Plasma samples were collected to analyze metabolic hormones and corticosterone levels. VCD-treated HFD-fed mice had higher fat and body mass, and elevated fasting glucose levels compared to controls and more pronounced avoidance behaviors and cognitive impairments. LFD-fed, VCD-treated mice exhibited less exploration of novel objects and open spaces compared to OIL and HFD counterparts. VCD elevated corticosterone levels on LFD and increased BNST Pacap gene expression on HFD. These findings highlight cognitive repercussions of estrogen deficiency and suggest a potential protective effect of a HFD against some of the adverse outcomes associated with menopause. Our study emphasizes the importance of considering dietary and hormonal interactions in the development of therapeutic strategies.
Collapse
|
2
|
Dave A, Park EJ, Kofsky P, Dufresne A, Chakraborty S, Pezzuto JM. Long-Term Dietary Consumption of Grapes Affects Kidney Health in C57BL/6J Mice. Nutrients 2024; 16:2309. [PMID: 39064752 PMCID: PMC11280382 DOI: 10.3390/nu16142309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Starting at 4 weeks of age, male and female C57BL/6J mice were provided with a semi-synthetic diet for a period of one year and then continued on the semi-synthetic diet with or without grape supplementation for the duration of their lives. During the course of the study, no variation of body weights was noted between the groups. At 2.5 years of age, the body-weight-to-tissue-weight ratios did not vary for the liver, colon, muscle, prostate, or ovary. However, relative to the standard diet, the body/kidney weight ratio was significantly lower in the male and female groups with grape-supplemented diets. With the mice provided with the standard diet, the BUN/creatinine ratios were 125 and 152 for males and females, respectively, and reduced to 63.7 and 40.4, respectively, when provided with the grape diet. A histological evaluation suggested that this may be due to enhanced/improved perfusion in the kidney as a preventive/protective effect. In response to the dietary grapes, an RNA seq analysis revealed up-regulation of 21 and 109 genes with male and female mice, respectively, with a corresponding down-regulation of 108 and 65 genes. The downward movement of the FPKM values in the males (alox5, btk, fga, fpr1, hmox1, lox, ltf, lyve1, marco, mmp8, prg4, s100a8/9, serpina3n, and vsig4) and upward movement of the FPKM values in the females (camp, cd300lf, cd72, fcgr4, fgr, fpr2, htra4, il10, lilrb4b, lipg, pilra, and tlr8) suggest beneficial kidney effects. The expression of some genes related to the immunological activity was also modulated by the grape diet, mainly downward in the males and upward in the females. The reactome pathway analysis, KEGG analysis, and GSEA normalized enrichment scores illustrate that several pathways related to immune function, collagenase degradation, extracellular matrix regulation, metabolism of vitamins and cofactors, pancreatic secretion, aging, and mitochondrial function were enriched in both the males and females provided with the grape diet. Overall, these results indicate that the long-term dietary consumption of grapes contributes to renal health and resilience against fibrosis and related pathologies.
Collapse
Affiliation(s)
- Asim Dave
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA;
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA; (E.-J.P.); (P.K.)
| | - Paulette Kofsky
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA; (E.-J.P.); (P.K.)
| | - Alexandre Dufresne
- Baystate Research Facility, Baystate Medical Center, Springfield, MA 01199, USA;
| | - Soma Chakraborty
- Department of Pathology, UMass Chan Medical School-Baystate, Springfield, MA 01199, USA;
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA; (E.-J.P.); (P.K.)
- Department of Medicine, UMass Chan Medical School-Baystate, Springfield, MA 01199, USA
| |
Collapse
|
3
|
Dave A, Park EJ, Pezzuto JM. Multi-Organ Nutrigenomic Effects of Dietary Grapes in a Mouse Model. Antioxidants (Basel) 2023; 12:1821. [PMID: 37891900 PMCID: PMC10604885 DOI: 10.3390/antiox12101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
As a whole food, the potential health benefits of table grapes have been widely studied. Some individual constituents have garnered great attention, particularly resveratrol, but normal quantities in the diet are meniscal. On the other hand, the grape contains hundreds of compounds, many of which have antioxidant potential. Nonetheless, the achievement of serum or tissue concentrations of grape antioxidants sufficient to mediate a direct quenching effect is not likely, which supports the idea of biological responses being mediated by an indirect catalytic-type response. We demonstrate herein with Hsd:ICR (CD-1® Outbred, 18-24 g, 3-4 weeks old, female) mice that supplementation of a semi-synthetic diet with a grape surrogate, equivalent to the human consumption of 2.5 servings per day for 12 months, modulates gene expression in the liver, kidney, colon, and ovary. As might be expected when sampling changes in a pool of over 35,000 genes, there are numerous functional implications. Analysis of some specific differentially expressed genes suggests the potential of grape consumption to bolster metabolic detoxification and regulation of reactive oxygen species in the liver, cellular metabolism, and anti-inflammatory activity in the ovary and kidney. In the colon, the data suggest anti-inflammatory activity, suppression of mitochondrial dysfunction, and maintaining homeostasis. Pathway analysis reveals a combination of up- and down-regulation in the target tissues, primarily up-regulated in the kidney and down-regulated in the ovary. More broadly, based on these data, it seems logical to conclude that grape consumption leads to modulation of gene expression throughout the body, the consequence of which may help to explain the broad array of activities demonstrated in diverse tissues such as the brain, heart, eye, bladder, and colon. In addition, this work further supports the profound impact of nutrigenomics on mammalian phenotypic expression.
Collapse
Affiliation(s)
- Asim Dave
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Department of Pharmaceutical and Administrative Science, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Department of Medicine, UMass Chan Medical School—Baystate, Springfield, MA 01199, USA
| |
Collapse
|
4
|
Mellor DD, Green DJ. A critical review exploring science communication of nutrition and dietetic research: a case-based approach exploring methodologies. J Hum Nutr Diet 2023; 36:1468-1479. [PMID: 36752389 DOI: 10.1111/jhn.13155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Nutrition is an area of apparent disagreement among the public and experts. It is also an area which has seen a rapid increase in the number of publications in the past 40 years. With the advent of online media and social media platforms, the volume of news has also increased. This review considered five types of nutrition research and how press releases linked to publications might be reported by the media. METHODS Examples were taken from nutrition-related articles published in the areas of in vitro work, animal data, epidemiology, clinical trials and data modelling publications which had press releases deposited in online repositories (EurekAlert! and AlphaGalileo). A critical narrative of the source of the media message, estimates of its reach and any potential exaggeration or source of confusion were identified. RESULTS It was clear that research has been reported by funders, journals and researchers' institutions in ways that claim extended findings of the data beyond that reported in the manuscript. This included inferences of health benefits in humans from laboratory studies, splitting outcome data for the same exposure in epidemiological studies based on perceived public interest, using clinical trials to make media claims that would not be permitted in advertisements and claiming modelled data for cases were actual changes in numbers of cases. CONCLUSIONS It is essential that funding bodies and institutions along with academic journals apply pressure to discourage exaggeration of research. This is necessary to maintain public trust in science and ultimately improve public health.
Collapse
Affiliation(s)
- Duane D Mellor
- Aston Medical School, Aston University, Birmingham, UK
- Centre for Health and Society, Aston University, Birmingham, UK
| | - Dan J Green
- School of Optometry, Aston University, Birmingham, UK
| |
Collapse
|
5
|
Dave A, Beyoğlu D, Park EJ, Idle JR, Pezzuto JM. Influence of grape consumption on the human microbiome. Sci Rep 2023; 13:7706. [PMID: 37173385 PMCID: PMC10182090 DOI: 10.1038/s41598-023-34813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Over the years, a substantial body of information has accumulated suggesting dietary consumption of grapes may have a positive influence on human health. Here, we investigate the potential of grapes to modulate the human microbiome. Microbiome composition as well as urinary and plasma metabolites were sequentially assessed in 29 healthy free-living male (age 24-55 years) and female subjects (age 29-53 years) following two-weeks of a restricted diet (Day 15), two-weeks of a restricted diet with grape consumption (equivalent to three servings per day) (Day 30), and four-weeks of restricted diet without grape consumption (Day 60). Based on alpha-diversity indices, grape consumption did not alter the overall composition of the microbial community, other than with the female subset based on the Chao index. Similarly, based on beta-diversity analyses, the diversity of species was not significantly altered at the three time points of the study. However, following 2 weeks of grape consumption, taxonomic abundance was altered (e.g., decreased Holdemania spp. and increased Streptococcus thermophiles), as were various enzyme levels and KEGG pathways. Further, taxonomic, enzyme and pathway shifts were observed 30 days following the termination of grape consumption, some of which returned to baseline and some of which suggest a delayed effect of grape consumption. Metabolomic analyses supported the functional significance of these alterations wherein, for example, 2'-deoxyribonic acid, glutaconic acid, and 3-hydroxyphenylacetic acid were elevated following grape consumption and returned to baseline following the washout period. Inter-individual variation was observed and exemplified by analysis of a subgroup of the study population showing unique patterns of taxonomic distribution over the study period. The biological ramifications of these dynamics remain to be defined. However, while it seems clear that grape consumption does not perturb the eubiotic state of the microbiome with normal, healthy human subjects, it is likely that shifts in the intricate interactive networks that result from grape consumption have physiological significance of relevance to grape action.
Collapse
Affiliation(s)
- Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Diren Beyoğlu
- College of Pharmacy and Health Sciences, Western New England University, 1215 Wilbraham Rd., Springfield, MA, 01119, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, 11201, USA
| | - Jeffrey R Idle
- College of Pharmacy and Health Sciences, Western New England University, 1215 Wilbraham Rd., Springfield, MA, 01119, USA
| | - John M Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, 1215 Wilbraham Rd., Springfield, MA, 01119, USA.
- Department of Medicine, UMass Chan Medical School-Baystate, Springfield, MA, 01199, USA.
| |
Collapse
|
6
|
Dave A, Park EJ, Kumar A, Parande F, Beyoğlu D, Idle JR, Pezzuto JM. Consumption of Grapes Modulates Gene Expression, Reduces Non-Alcoholic Fatty Liver Disease, and Extends Longevity in Female C57BL/6J Mice Provided with a High-Fat Western-Pattern Diet. Foods 2022; 11:1984. [PMID: 35804799 PMCID: PMC9265568 DOI: 10.3390/foods11131984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
A key objective of this study was to explore the potential of dietary grape consumption to modulate adverse effects caused by a high-fat (western-pattern) diet. Female C57BL/6J mice were purchased at six-weeks-of-age and placed on a standard (semi-synthetic) diet (STD). At 11 weeks-of-age, the mice were continued on the STD or placed on the STD supplemented with 5% standardized grape powder (STD5GP), a high-fat diet (HFD), or an HFD supplemented with 5% standardized grape powder (HFD5GP). After being provided with the respective diets for 13 additional weeks, the mice were euthanized, and liver was collected for biomarker analysis, determination of genetic expression (RNA-Seq), and histopathological examination. All four dietary groups demonstrated unique genetic expression patterns. Using pathway analysis tools (GO, KEGG and Reactome), relative to the STD group, differentially expressed genes of the STD5GP group were significantly enriched in RNA, mitochondria, and protein translation related pathways, as well as drug metabolism, glutathione, detoxification, and oxidative stress associated pathways. The expression of Gstp1 was confirmed to be upregulated by about five-fold (RT-qPCR), and, based on RNA-Seq data, the expression of additional genes associated with the reduction of oxidative stress and detoxification (Gpx4 and 8, Gss, Gpx7, Sod1) were enhanced by dietary grape supplementation. Cluster analysis of genetic expression patterns revealed the greatest divergence between the HFD5GP and HFD groups. In the HFD5GP group, relative to the HFD group, 14 genes responsible for the metabolism, transportation, hydrolysis, and sequestration of fatty acids were upregulated. Conversely, genes responsible for lipid content and cholesterol synthesis (Plin4, Acaa1b, Slc27a1) were downregulated. The two top classifications emerging as enriched in the HFD5GP group vs. the HFD group (KEGG pathway analysis) were Alzheimer's disease and nonalcoholic fatty liver disease (NAFLD), both of which have been reported in the literature to bear a causal relationship. In the current study, nonalcoholic steatohepatitis was indicated by histological observations that revealed archetype markers of fatty liver induced by the HFD. The adverse response was diminished by grape intervention. In addition to these studies, life-long survival was assessed with C57BL/6J mice. C57BL/6J mice were received at four-weeks-of-age and placed on the STD. At 14-weeks-of-age, the mice were divided into two groups (100 per group) and provided with the HFD or the HFD5GP. Relative to the HFD group, the survival time of the HFD5GP group was enhanced (log-rank test, p = 0.036). The respective hazard ratios were 0.715 (HFD5GP) and 1.397 (HFD). Greater body weight positively correlated with longevity; the highest body weight of the HFD5GP group was attained later in life than the HFD group (p = 0.141). These results suggest the potential of dietary grapes to modulate hepatic gene expression, prevent oxidative damage, induce fatty acid metabolism, ameliorate NAFLD, and increase longevity when co-administered with a high-fat diet.
Collapse
Affiliation(s)
- Asim Dave
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
| | - Avinash Kumar
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
| | - Falguni Parande
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
- Artus Therapeutics, Harvard Life Lab, Allston, MA 02134, USA
| | - Diren Beyoğlu
- Arthur G. Zupko’s Institute of Systems Pharmacology and Pharmacogenomics, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (D.B.); (J.R.I.)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Institute of Systems Pharmacology and Pharmacogenomics, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (D.B.); (J.R.I.)
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|