1
|
Heydari F, Nasiri M, Haroabadi A, Fahanik Babaei J, Pestehei SK. Efficacy of melatonin in alleviating disorders arising from repeated exposure to sevoflurane in males and females of the Wistar rats during preadolescence. Sci Rep 2024; 14:11889. [PMID: 38789558 PMCID: PMC11126601 DOI: 10.1038/s41598-024-62170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pediatricians use sevoflurane due to its fast action and short recovery time. However, studies have shown that repeated exposure to anesthesia can affect learning and memory. Melatonin, an indole-type neuroendocrine hormone, has significant anti-inflammatory, and neuroprotective properties. Melatonin's impact on cognitive behavior in sevoflurane-anesthetized males and females of the Wistar rats during preadolescence was examined in this research. The cognitive function was evaluated by shuttle box and morris water maze tests, while interleukin-10, Catalase (CAT), Malondialdehyde (MDA), and Tumor Necrosis Factor-α (TNF-α) were evaluated using ELISA kits. The expression levels of the apoptosis-linked proteins, Bax, Bcl-2, and caspase-3, were determined using the western blotting technique. The learning and memory latencies of the rats were more significant in the sevoflurane groups than in the control group; however, the latencies were significantly shorter in the sevoflurane and melatonin groups than in the control group. The levels of MDA, TNF-α, Bax, and caspase-3 were significantly higher in the sevoflurane groups than in the control group. We also found that the levels of CAT and Bcl-2 were significantly reduced in the sevoflurane groups compared to the control group. Increasing levels of CAT, Bcl-2, and decreasing levels of MDA, TNF-α, Bax, and caspase-3 in response to melatonin indicate a possible contribution to the recovery from the sevoflurane impairment. Melatonin shows neuroprotective effects in male and female rats with sevoflurane-induced cognitive impairment. This suggests melatonin could be a valuable treatment for learning and memory deficits resulting from repeated exposure to sevoflurane, possibly by controlling apoptosis, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Fatemeh Heydari
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Nasiri
- Electrophysiology Research Center, Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Haroabadi
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Khalil Pestehei
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran.
- Electrophysiology Research Center, Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhang H, Niu Y, Qiu L, Yang J, Sun J, Xia J. Melatonin-mediated mitophagy protects against long-term impairments after repeated neonatal sevoflurane exposures. Int Immunopharmacol 2023; 125:111210. [PMID: 37976600 DOI: 10.1016/j.intimp.2023.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Melatonin is known to have protective effects in aging, neurodegenerative disorders and mitochondria-related diseases, while there is a poor understanding of the effects of melatonin treatment on mitophagy in neonatal cognitive dysfunction after repeated sevoflurane exposures. This study explores the protective effects of melatonin on mitophagy and cognition in developing rats exposed to sevoflurane. METHODS Postnatal day six (P6) neonatal rats were exposed to 3 % sevoflurane for 2 h daily from P6 to P8. In the intervention groups, rats received 3-Methyladenine (3-MA) intracerebroventricularly from P6 to P8 and melatonin intraperitoneally from P6 to P8 following water drinking once daily from P21 to P41, respectively. Behavioral tests, including open field (OF), novel object recognition (NOR), and fear conditioning (FC) tests, were performed to assess cognitive function during young adulthood. In another experiment, rat brains were harvested for biochemical, histopathological, and electron microscopy studies. RESULTS Rats exposed to sevoflurane showed disordered mitophagy and mitochondrial dysfunction as revealed by increased mitophagy marker proteins (microtubule-associated protein 1 light chain 3 (LC3) II/I, and parkin), decreased autophagy marker protein (sequestosome 1 (P62/SQSTM1)), electron transport chain (ETC) proteins and ATP levels. Immunofluorescent staining of LC3 was co-localized mostly with a neuronal marker and microglial marker but was not co-localized with a marker for astrocytes in rats exposed to sevoflurane. These rats had poorer performance in the NOR and FC tests than control rats during young adulthood. Melatonin treatment reversed the abnormal expression of mitophagy proteins, mitochondrial energy metabolism, the activity of microglia, and impaired cognition. These ameliorations were blocked by an autophagy inhibitor, 3-MA, except for the activation of microglia. CONCLUSION We have demonstrated that melatonin inhibits microglial activation by enhancing mitophagy and finally significantly reduces sevoflurane-induced deficits in cognition in neonatal rats. These results suggest that melatonin might be beneficial if considered when the anesthesia must be administered at a very young age.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yingqiao Niu
- Department of Anesthesiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Lili Qiu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jiaojiao Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
3
|
Aksenov DP, Li L, Serdyukova NA, Gascoigne DA, Doubovikov ED, Drobyshevsky A. Functional Deficiency of Interneurons and Negative BOLD fMRI Response. Cells 2023; 12:cells12050811. [PMID: 36899947 PMCID: PMC10000915 DOI: 10.3390/cells12050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The functional deficiency of the inhibitory system typically appears during development and can progress to psychiatric disorders or epilepsy, depending on its severity, in later years. It is known that interneurons, the major source of GABAergic inhibition in the cerebral cortex, can make direct connections with arterioles and participate in the regulation of vasomotion. The goal of this study was to mimic the functional deficiency of interneurons through the use of localized microinjections of the GABA antagonist, picrotoxin, in such a concentration that it did not elicit epileptiform neuronal activity. First, we recorded the dynamics of resting-state neuronal activity in response to picrotoxin injections in the somatosensory cortex of an awake rabbit; second, we assessed the altered neuronal and hemodynamic responses to whisker stimulation using BOLD fMRI and electrophysiology recordings; third, we evaluated brain tissue oxygen levels before and after picrotoxin injection. Our results showed that neuronal activity typically increased after picrotoxin administration, the BOLD responses to stimulation became negative, and the oxygen response was nearly abolished. Vasoconstriction during the resting baseline was not observed. These results indicate that picrotoxin provoked imbalanced hemodynamics either due to increased neuronal activity, decreased vascular response, or a combination of both.
Collapse
Affiliation(s)
- Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Correspondence:
| | - Limin Li
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Natalya A. Serdyukova
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Evan D. Doubovikov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Alexander Drobyshevsky
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| |
Collapse
|
4
|
Zhang P, Sha Z. Association of the lncRNA-GAS5 promoter region rs145204276 polymorphism with sevoflurane maintenance anesthesia outcomes on patients undergoing laparoscopic cholecystectomy. Saudi Med J 2023; 44:137-144. [PMID: 36773978 PMCID: PMC9987708 DOI: 10.15537/smj.2023.44.2.20220617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 02/13/2023] Open
Abstract
OBJECTIVES To further investigate how sevoflurane affects the oxidative stress injury (OSI) in patients undergoing laparoscopic cholecystectomy (LC). METHODS A prospective cohort study was carried out at Shandong Provincial Third Hospital, Jinan, China on 82 gallstone patients who underwent LC, with sevoflurane maintenance during surgery. Genotyping analysis of the rs145204276 polymorphism was performed using the TaqMan platform. Oxidative stress injury and liver injury parameters were also examined. Lipopolysaccharide (LPS)-induced macrophages, which were challenged with sevoflurane, propofol, or the lncRNA-GAS5 overexpressing plasmid, were used to evaluate the effect of Sevoflurane on lncRNA-GAS5-mediated macrophage polarization. RESULTS At TM1 and TM2, the levels of OSI markers and long noncoding (lnc) RNA-GAS5 were not obviously different, whereas at the TM3 time point, these indices were significantly different between the Del-Sevoflurane and Del-Propofol subgroups. These indices were not different between the Ins-sevoflurane and Ins-Propofol subgroups at any time point. Cell-based experiments demonstrated that Sevoflurane could increased the lncRNA-GAS5 level in LPS-induced Del-macrophages (p=0.0058), but Propofol did not have this effect (p=0.847). Both Sevoflurane and Propofol did not have the effect on lncRNA-GAS5 level in LPS-induced Ins-macrophages (p=0.321 and p=0.822, respectively). CONCLUSION Sevoflurane maintenance can decrease OSI during LC in the Del genotype of the rs145204276 polymorphism. The Del genotype facilitates lncRNA-GAS5 up-regulation under Sevoflurane exposure and therefore decrease the extent of M1 macrophage polarization.
Collapse
Affiliation(s)
- Panpan Zhang
- From the Department of Anesthesiology, Shandong Provincial Third Hospital, Jinan, China.
| | - Zhanming Sha
- From the Department of Anesthesiology, Shandong Provincial Third Hospital, Jinan, China.
- Address correspondence and reprint request to: Dr. Zhanming Sha, Department of Anesthesiology, Shandong Provincial Third Hospital, Jinan, China. E-mail: ORCID ID: https://orcid.org/0000-0003-0718-5717
| |
Collapse
|
5
|
Aksenov DP, Gascoigne DA, Duan J, Drobyshevsky A. Function and development of interneurons involved in brain tissue oxygen regulation. Front Mol Neurosci 2022; 15:1069496. [PMID: 36504684 PMCID: PMC9729339 DOI: 10.3389/fnmol.2022.1069496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
The regulation of oxygen in brain tissue is one of the most important fundamental questions in neuroscience and medicine. The brain is a metabolically demanding organ, and its health directly depends on maintaining oxygen concentrations within a relatively narrow range that is both sufficiently high to prevent hypoxia, and low enough to restrict the overproduction of oxygen species. Neurovascular interactions, which are responsible for oxygen delivery, consist of neuronal and glial components. GABAergic interneurons play a particularly important role in neurovascular interactions. The involvement of interneurons extends beyond the perspective of inhibition, which prevents excessive neuronal activity and oxygen consumption, and includes direct modulation of the microvasculature depending upon their sub-type. Namely, nitric oxide synthase-expressing (NOS), vasoactive intestinal peptide-expressing (VIP), and somatostatin-expressing (SST) interneurons have shown modulatory effects on microvessels. VIP interneurons are known to elicit vasodilation, SST interneurons typically cause vasoconstriction, and NOS interneurons have to propensity to induce both effects. Given the importance and heterogeneity of interneurons in regulating local brain tissue oxygen concentrations, we review their differing functions and developmental trajectories. Importantly, VIP and SST interneurons display key developmental milestones in adolescence, while NOS interneurons mature much earlier. The implications of these findings point to different periods of critical development of the interneuron-mediated oxygen regulatory systems. Such that interference with normal maturation processes early in development may effect NOS interneuron neurovascular interactions to a greater degree, while insults later in development may be more targeted toward VIP- and SST-mediated mechanisms of oxygen regulation.
Collapse
Affiliation(s)
- Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States,Pritzker School of Medicine, University of Chicago, Chicago, IL, United States,*Correspondence: Daniil P. Aksenov,
| | - David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, United States,Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, United States
| | - Alexander Drobyshevsky
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States,Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| |
Collapse
|