1
|
He X, Liang F, Guo Y, Hou G, Chen X, Li L. Relationship Between A Body Shape Index and Self-Reported Stress Urinary Incontinence Among US Women: A Cross-Sectional Analysis. Int Urogynecol J 2024:10.1007/s00192-024-06001-0. [PMID: 39692874 DOI: 10.1007/s00192-024-06001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION AND HYPOTHESIS Stress urinary incontinence (SUI) is common among women, but its link with A Body Shape Index (ABSI) is not well understood. This study investigates the association between ABSI and SUI risk in women, exploring variations across different subgroups. METHODS Data from National Health and Nutrition Examination Survey (2001-2020) were analyzed. A weighted multivariable logistic regression was performed to examine the relationship between ABSI and SUI risk, calculating odds ratios and 95% confidence intervals. A restricted cubic spline (RCS) analysis was used to assess any nonlinear associations. Subgroup analyses and interaction tests were conducted to explore the influence of factors on the ABSI-SUI relationship. Sensitivity analyses were also performed to ensure the robustness of the findings. RESULTS The analysis, after adjusting for potential confounders, showed a significant association between ABSI and SUI risk (p < 0.001). The RCS analysis indicated a nonlinear relationship (p for nonlinear = 0.02) with a turning point at an ABSI of 0.081. Subgroup analyses revealed that the association between ABSI and SUI was stronger in women with lower BMI, non-Mexican ethnicity, and those without hypertension (p for interaction < 0.05). Sensitivity analyses confirmed the consistency of these findings, supporting their robustness. CONCLUSION Higher ABSI is associated with an increased risk of SUI in US women, particularly in specific subgroups. This suggests that ABSI could be a valuable measure for identifying women at higher risk of SUI.
Collapse
Affiliation(s)
- Xingyun He
- Department of Gynecology, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Fenxiong Liang
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Yuewen Guo
- Department of Obstetrics, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Guiyu Hou
- Department of Obstetrics, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xiting Chen
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Lixin Li
- Department of Obstetrics, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
| |
Collapse
|
2
|
Ramírez-Garza SL, Laveriano-Santos EP, Moreno JJ, Bodega P, de Cos-Gandoy A, de Miguel M, Santos-Beneit G, Fernández-Alvira JM, Fernández-Jiménez R, Martínez-Gómez J, Ruiz-León AM, Estruch R, Lamuela-Raventós RM, Tresserra-Rimbau A. Metabolic syndrome, adiposity, diet, and emotional eating are associated with oxidative stress in adolescents. Front Nutr 2023; 10:1216445. [PMID: 37789897 PMCID: PMC10543258 DOI: 10.3389/fnut.2023.1216445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Background Metabolic syndrome (MS), a condition related to adiposity and oxidative stress, can develop in adolescence, a critical stage in life that impacts health in adulthood. However, there is scarce scientific research about the relationship between lifestyle factors, emotion management, and oxidative stress in this phase of life. Aim To analyze whether nutritional parameters, lifestyle factors, emotion management, and MS in adolescents are associated with oxidative stress measured by the biomarker 8-isoprostane. Methods A cross-sectional study was carried out in 132 adolescents (48.5% girls, aged 12 ± 0.48 years) and data were collected on nutritional parameters (anthropometric measurements, biochemical analyzes, and blood pressure), lifestyle factors (physical activity, sleep, and diet), and emotion management (self-esteem, emotional eating, and mood). 8-isoprostane was analyzed in spot urine samples. The study population was categorized in three groups (healthy, at-risk, and with MS) using the International Diabetes Federation definition of MS in adolescents. To capture more complex interactions, a multiple linear regression was used to analyze the association between 8-isoprostane and the aforementioned variables. Results Urinary 8-isoprostane levels were significantly higher in the MS group compared to the healthy group (1,280 ± 543 pg./mg vs. 950 ± 416 pg./mg respectively). In addition, univariable analysis revealed positive significant associations between 8-isoprostane and body mass index, waist circumference, waist-to-height ratio, body fat percentage, blood lipid profile and glucose, emotional eating, and refined cereal intake. Conversely, a negative significant association was found between 8-isoprostane and sleep duration and fish intake. The multiple linear regression analysis revealed associations between 8-isoprostane and LDL-c (β = 0.173 value of p = 0.049), emotional eating (low β = 0.443, value of p = 0.036; high β = 0.152, value of p = 0.470), refined cereal intake (β =0.191, value of p = 0.024), and fish intake (β = -0.187, value of p = 0.050). Conclusion The MS group, LDL-c, emotional eating, and high refined cereals and low fish intakes were associated with higher levels of oxidative stress in an adolescent population.
Collapse
Affiliation(s)
- Sonia L. Ramírez-Garza
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety Research, University of Barcelona, Barcelona, Spain
| | - Emily P. Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety Research, University of Barcelona, Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J. Moreno
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety Research, University of Barcelona, Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Bodega
- Foundation for Science, Health and Education, Barcelona, Spain
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Amaya de Cos-Gandoy
- Foundation for Science, Health and Education, Barcelona, Spain
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Mercedes de Miguel
- Foundation for Science, Health and Education, Barcelona, Spain
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Gloria Santos-Beneit
- Foundation for Science, Health and Education, Barcelona, Spain
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Hospital Universitario Clínico San Carlos, Madrid, Spain
- Centro de Investigación Biomédica En Red en Enfermedades CardioVasculares, Madrid, Spain
| | | | - Ana María Ruiz-León
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Ramon Estruch
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety Research, University of Barcelona, Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Tresserra-Rimbau
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety Research, University of Barcelona, Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Blanton C, Ghimire B, Khajeh Pour S, Aghazadeh-Habashi A. Circadian Modulation of the Antioxidant Effect of Grape Consumption: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6502. [PMID: 37569042 PMCID: PMC10419126 DOI: 10.3390/ijerph20156502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Grape consumption acts on the immune system to produce antioxidant and anti-inflammatory effects. Since immune activity demonstrates circadian rhythmicity, with peak activity occurring during waking hours, the timing of grape intake may influence the magnitude of its antioxidant effect. This study followed a 2 × 2 factorial randomized, controlled design wherein healthy men and women (n = 32) consumed either a grape or placebo drink with a high-fat meal in the morning or evening. Urine was collected for measurements of biomarkers of oxidative stress and grape metabolites at baseline and post-meal at hour 1 and hours 1-6. F-2 isoprostane levels showed main effects of time period (baseline < hour 1 < hours 1-6, p < 0.0001), time (a.m. > p.m., p = 0.008) and treatment (placebo > grape, p = 0.05). Total F2-isoprostane excretion expressed as % baseline was higher in the a.m. vs. p.m. (p = 0.004) and in the a.m. placebo vs. all other groups (p < 0.05). Tartaric acid and resveratrol excretion levels were higher in the grape vs. placebo group (p < 0.05) but were not correlated with F-2 isoprostane levels. The findings support a protective effect of grape consumption against morning sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Cynthia Blanton
- Department of Nutrition and Dietetics, Idaho State University, Pocatello, ID 83209, USA
| | - Biwash Ghimire
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (B.G.); (S.K.P.)
| | - Sana Khajeh Pour
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (B.G.); (S.K.P.)
| | - Ali Aghazadeh-Habashi
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (B.G.); (S.K.P.)
| |
Collapse
|
4
|
Ait Tayeb AEK, Poinsignon V, Chappell K, Bouligand J, Becquemont L, Verstuyft C. Major Depressive Disorder and Oxidative Stress: A Review of Peripheral and Genetic Biomarkers According to Clinical Characteristics and Disease Stages. Antioxidants (Basel) 2023; 12:antiox12040942. [PMID: 37107318 PMCID: PMC10135827 DOI: 10.3390/antiox12040942] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder (MDD) is currently the main cause of disability worldwide, but its pathophysiology remains largely unknown, especially given its high heterogeneity in terms of clinical phenotypes and biological characteristics. Accordingly, its management is still poor. Increasing evidence suggests that oxidative stress, measured on various matrices such as serum, plasma or erythrocytes, has a critical role in MDD. The aim of this narrative review is to identify serum, plasma and erythrocyte biomarkers of oxidative stress in MDD patients according to disease stage and clinical features. Sixty-three articles referenced on PubMed and Embase between 1 January 1991, and 31 December 2022, were included. Modifications to antioxidant enzymes (mainly glutathione peroxidase and superoxide dismutase) in MDD were highlighted. Non-enzymatic antioxidants (mainly uric acid) were decreased in depressed patients compared to healthy controls. These changes were associated with an increase in reactive oxygen species. Therefore, increased oxidative damage products (principally malondialdehyde, protein carbonyl content and 8-hydroxy-2'-deoxyguanosine) were present in MDD patients. Specific modifications could be identified according to disease stages and clinical features. Interestingly, antidepressant treatment corrected these changes. Accordingly, in patients in remission from depression, oxidative stress markers were globally normalized. This narrative review suggests the particular interest of oxidative stress biomarkers for MDD care that may contribute to the heterogeneity of the disease and provide the opportunity to find new therapeutic targets.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Vianney Poinsignon
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Universitaires Paris-Saclay, F-94275 Le Kremlin Bicêtre, France
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Universitaires Paris-Saclay, F-94275 Le Kremlin Bicêtre, France
| | - Jérôme Bouligand
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- INSERM UMR-S U1185, Faculté de Médecine, Universitaires Paris-Saclay, F-94275 Le Kremlin Bicêtre, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Universitaires Paris-Saclay, F-94275 Le Kremlin Bicêtre, France
- Centre de Recherche Clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Universitaires Paris-Saclay, F-94275 Le Kremlin Bicêtre, France
| |
Collapse
|
5
|
Inhibition of Microglial GSK3β Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines 2023; 11:biomedicines11030806. [PMID: 36979785 PMCID: PMC10045655 DOI: 10.3390/biomedicines11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Collapse
|
6
|
Cao J, Zhang Y, Yang Y, Xie J, Su Z, Li F, Li J, Zhang B, Wang Z, Zhang P, Li Z, He L, Liu H, Zheng W, Zhang S, Hong A, Chen X. Turning gray selenium and sublimed sulfur into a nanocomposite to accelerate tissue regeneration by isothermal recrystallization. J Nanobiotechnology 2023; 21:57. [PMID: 36803772 PMCID: PMC9942369 DOI: 10.1186/s12951-023-01796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Globally, millions of patients suffer from regenerative deficiencies, such as refractory wound healing, which is characterized by excessive inflammation and abnormal angiogenesis. Growth factors and stem cells are currently employed to accelerate tissue repair and regeneration; however, they are complex and costly. Thus, the exploration of new regeneration accelerators is of considerable medical interest. This study developed a plain nanoparticle that accelerates tissue regeneration with the involvement of angiogenesis and inflammatory regulation. METHODS Grey selenium and sublimed sulphur were thermalized in PEG-200 and isothermally recrystallised to composite nanoparticles (Nano-Se@S). The tissue regeneration accelerating activities of Nano-Se@S were evaluated in mice, zebrafish, chick embryos, and human cells. Transcriptomic analysis was performed to investigate the potential mechanisms involved during tissue regeneration. RESULTS Through the cooperation of sulphur, which is inert to tissue regeneration, Nano-Se@S demonstrated improved tissue regeneration acceleration activity compared to Nano-Se. Transcriptome analysis revealed that Nano-Se@S improved biosynthesis and ROS scavenging but suppressed inflammation. The ROS scavenging and angiogenesis-promoting activities of Nano-Se@S were further confirmed in transgenic zebrafish and chick embryos. Interestingly, we found that Nano-Se@S recruits leukocytes to the wound surface at the early stage of regeneration, which contributes to sterilization during regeneration. CONCLUSION Our study highlights Nano-Se@S as a tissue regeneration accelerator, and Nano-Se@S may provide new inspiration for therapeutics for regenerative-deficient diseases.
Collapse
Affiliation(s)
- Jieqiong Cao
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yibo Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiqi Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junye Xie
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zijian Su
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Fu Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jingsheng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Bihui Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhenyu Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Peiguang Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhixin Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Liu He
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Hongwei Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Shuixing Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - An Hong
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xiaojia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Zuo C, Cao H, Song Y, Gu Z, Huang Y, Yang Y, Miao J, Zhu L, Chen J, Jiang Y, Wang F. Nrf2: An all-rounder in depression. Redox Biol 2022; 58:102522. [PMID: 36335763 PMCID: PMC9641011 DOI: 10.1016/j.redox.2022.102522] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
The balance between oxidation and antioxidant is crucial for maintaining homeostasis. Once disrupted, it can lead to various pathological outcomes and diseases, such as depression. Oxidative stress can result in or aggravate a battery of pathological processes including mitochondrial dysfunction, neuroinflammation, autophagical disorder and ferroptosis, which have been found to be involved in the development of depression. Inhibition of oxidative stress and related pathological processes can help improve depression. In this regard, the nuclear factor erythroid 2-related factor 2 (Nrf2) in the antioxidant defense system may play a pivotal role. Nrf2 activation can not only regulate the expression of a series of antioxidant genes that reduce oxidative stress and its damages, but also directly regulate the genes related to the above pathological processes to combat the corresponding alterations. Therefore, targeting Nrf2 has great potential for the treatment of depression. Activation of Nrf2 has antidepressant effect, but the specific mechanism remains to be elucidated. This article reviews the key role of Nrf2 in depression, focusing on the possible mechanisms of Nrf2 regulating oxidative stress and related pathological processes in depression treatment. Meanwhile, we summarize some natural and synthetic compounds targeting Nrf2 in depression therapy. All the above may provide new insights into targeting Nrf2 for the treatment of depression and provide a broad basis for clinical transformation.
Collapse
|