1
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
2
|
de Jongh CA, Bikker FJ, de Vries TJ, Werner A, Gibbs S, Krom BP. Porphyromonas gingivalis interaction with Candida albicans allows for aerobic escape, virulence and adherence. Biofilm 2024; 7:100172. [PMID: 38226024 PMCID: PMC10788424 DOI: 10.1016/j.bioflm.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
In the oral cavity Candida albicans interacts with many oral bacteria, including Porphyromonas gingivalis, both physically and metabolically. The aim of this in vitro study was to characterize these interactions and study their effects on the survival of P. gingivalis. First, metabolic interactions were evaluated by counting the colony forming units (CFU) after co-culturing. The results indicated that the anaerobic bacterium P. gingivalis survives under aerobic conditions when co-cultured with C. albicans. This is due to the oxygen consumption by C. albicans as determined by a reduction in survival upon the addition of Antimycin A. By measuring the protease activity, it was found that the presence of C. albicans induced gingipain activity by P. gingivalis, which is an important virulence factor. Adherence of P. gingivalis to hyphae of C. albicans was observed with a dynamic flow system. Using various C. albicans mutants, it was shown that the mechanism of adhesion was mediated by the cell wall adhesins, members of the agglutinin-like sequence (Als) family: Als3 and Als1. Furthermore, the two microorganisms could be co-cultured into forming a biofilm in which P. gingivalis can survive under aerobic culturing conditions, which was imaged using scanning electron microscopy. This study has further elucidated mechanisms of interaction, virulence acquisition and survival of P. gingivalis when co-cultured with C. albicans. Such survival could be essential for the pathogenicity of P. gingivalis in the oxygen-rich niches of the oral cavity. This study has emphasized the importance of interaction between different microbes in promoting survival, virulence and attachment of pathogens, which could be essential in facilitating penetration into the environment of the host.
Collapse
Affiliation(s)
- Caroline A. de Jongh
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Arie Werner
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Kim BY, Lee KS, Jin BR. Antioxidant Activity and Mechanism of Action of Amwaprin: A Protein in Honeybee ( Apis mellifera) Venom. Antioxidants (Basel) 2024; 13:469. [PMID: 38671917 PMCID: PMC11047345 DOI: 10.3390/antiox13040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Bee venom contains several bioactive components, including enzymatic and non-enzymatic proteins. There is increasing interest in the bioactive components of bee venom since they have exhibited various pharmacological effects. Recently, Apis mellifera waprin (Amwaprin) was identified as a novel protein in Apis mellifera (honeybee) venom and characterized as an antimicrobial agent. Herein, the novel biological function of Amwaprin as an antioxidant is described. In addition, the antioxidant effects of Amwaprin in mammalian cells were investigated. Amwaprin inhibited the growth of, oxidative stress-induced cytotoxicity, and inflammatory response in mammalian NIH-3T3 cells. Amwaprin decreased caspase-3 activity during oxidative stress and exhibited protective activity against oxidative stress-induced cell apoptosis in NIH-3T3 and insect Sf9 cells. The mechanism underlying the cell protective effect of Amwaprin against oxidative stress is due to its direct binding to the cell membrane. Furthermore, Amwaprin demonstrated radical-scavenging activity and protected against oxidative DNA damage. These results suggest that the antioxidant capacity of Amwaprin is attributed to the synergistic effects of its radical-scavenging action and cell shielding, indicating its novel role as an antioxidant agent.
Collapse
Affiliation(s)
| | - Kwang-Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea;
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea;
| |
Collapse
|
4
|
Moskwa J, Naliwajko SK, Dobiecka D, Socha K. Bee Products and Colorectal Cancer—Active Components and Mechanism of Action. Nutrients 2023; 15:nu15071614. [PMID: 37049455 PMCID: PMC10097172 DOI: 10.3390/nu15071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Colorectal cancer is one of the most common malignancies in the world. Lifestyle and eating patterns may have a significant impact on the prevention of this type of cancer. Bioactive food ingredients influence the gut microbiome and can have a protective effect. Bee products (honey, propolis, royal jelly, and bee venom) or pharmacologically active fractions obtained from them are widely used in many fields of medicine, pharmacy, and cosmetics. Some evidence suggests that bee products may have anti-cancer potential. The main bioactive components with anti-colon cancer potential from propolis and bee honey are polyphenols such as pinocembrin, galangin, luteolin, CAPE, Artepilin C, chrysin, caffeic, and p-coumaric acids. This review is focused on the new data on epidemiology, risk factors for colon cancer, and current reports on the potential role of bee products in the chemoprevention of this type of cancer.
Collapse
|
5
|
Shirmohammadi A, Maleki Dizaj S, Sharifi S, Fattahi S, Negahdari R, Ghavimi MA, Memar MY. Promising Antimicrobial Action of Sustained Released Curcumin-Loaded Silica Nanoparticles against Clinically Isolated Porphyromonas gingivalis. Diseases 2023; 11:diseases11010048. [PMID: 36975597 PMCID: PMC10047251 DOI: 10.3390/diseases11010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis (P. gingivalis) has always been one of the leading causes of periodontal disease, and antibiotics are commonly used to control it. Numerous side effects of synthetic drugs, as well as the spread of drug resistance, have led to a tendency toward using natural antimicrobials, such as curcumin. The present study aimed to prepare and physicochemically characterize curcumin-loaded silica nanoparticles and to detect their antimicrobial effects on P. gingivalis. METHODS Curcumin-loaded silica nanoparticles were prepared using the chemical precipitation method and then were characterized using conventional methods (properties such as the particle size, drug loading percentage, and release pattern). P. gingivalis was isolated from one patient with chronic periodontal diseases. The patient's gingival crevice fluid was sampled using sterile filter paper and was transferred to the microbiology laboratory in less than 30 min. The disk diffusion method was used to determine the sensitivity of clinically isolated P. gingivalis to curcumin-loaded silica nanoparticles. SPSS software, version 20, was used to compare the data between groups with a p value of <0.05 as the level of significance. Then, one-way ANOVA testing was utilized to compare the groups. RESULTS The curcumin-loaded silica nanoparticles showed a nanometric size and a drug loading percentage of 68% for curcumin. The nanoparticles had a mesoporous structure and rod-shaped morphology. They showed a relatively rapid release pattern in the first 5 days. The release of the drug from the nanoparticles continued slowly until the 45th day. The results of in vitro antimicrobial tests showed that P. gingivalis was sensitive to the curcumin-loaded silica nanoparticles at concentrations of 50, 25, 12.5, and 6.25 µg/mL. One-way ANOVA showed that there was a significant difference between the mean growth inhibition zone, and the concentration of 50 µg/mL showed the highest inhibition zone (p ≤ 0.05). CONCLUSION Based on the obtained results, it can be concluded that the local nanocurcumin application for periodontal disease and implant-related infections can be considered a promising method for the near future in dentistry.
Collapse
Affiliation(s)
- Adileh Shirmohammadi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Shirin Fattahi
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Ramin Negahdari
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Science, Tabriz 5166, Iran
| | - Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| |
Collapse
|
6
|
Physicochemical Profile, Antioxidant and Antimicrobial Activities of Honeys Produced in Minas Gerais (Brazil). Antibiotics (Basel) 2022; 11:antibiotics11101429. [PMID: 36290087 PMCID: PMC9598309 DOI: 10.3390/antibiotics11101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
Honeys can be classified as polyfloral or monofloral and have been extensively studied due to an increased interest in their consumption. There is concern with the correct identification of their flowering, the use of analyses that guarantee their physicochemical quality and the quantification of some compounds such as phenolics, to determine their antioxidant and antimicrobial action. This study aims at botanical identification, physicochemical analyses, and the determination of total polyphenols, chromatographic profile and antiradical and antimicrobial activity of honey from different regions of Minas Gerais. Seven different samples were analyzed for the presence of pollen, and color determination. The physicochemical analyses performed were total acidity, moisture, HMF, reducing sugar, and apparent sucrose. The compound profile was determined by UHPLC/MS, the determination of total phenolics and antiradical activity (DPPH method) were performed by spectrophotometry, and minimum inhibitory and bacterial concentrations were determined for cariogenic bacteria. All honey samples met the quality standards required by international legislation, twenty compounds were detected as the main ones, the polyfloral honey was the only honey that inhibited all of the bacteria tested. Sample M6 (Coffee) was the one with the highest amount of total polyphenols, while the lowest was M4 (Cipó-uva). Regarding the antioxidant activity, M5 (Velame) had the best result and M4 (Cipó-uva) was the one that least inhibited oxidation. Of the polyfloral honeys, there was not as high a concentration of phenolic compounds as in the others. Coffee, Aroeira, Velame and Polyfloral have the best anti-radical actions. Betônica, Aroeira, Cipó-uva and Pequi inhibited only some bacteria. The best bacterial inhibition results are from Polyfloral.
Collapse
|
7
|
Popovici V, Matei E, Cozaru GC, Bucur L, Gîrd CE, Schröder V, Ozon EA, Mitu MA, Musuc AM, Petrescu S, Atkinson I, Rusu A, Mitran RA, Anastasescu M, Caraiane A, Lupuliasa D, Aschie M, Dumitru E, Badea V. Design, Characterization, and Anticancer and Antimicrobial Activities of Mucoadhesive Oral Patches Loaded with Usnea barbata (L.) F. H. Wigg Ethanol Extract F-UBE-HPMC. Antioxidants (Basel) 2022; 11:1801. [PMID: 36139875 PMCID: PMC9495557 DOI: 10.3390/antiox11091801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
The oral cavity's common pathologies are tooth decay, periodontal disease, and oral cancer; oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high mortality rate. Our study aims to formulate, develop, characterize, and pharmacologically investigate the oral mucoadhesive patches (F-UBE-HPMC) loaded with Usnea barbata (L.) F.H. Wigg dry ethanol extract (UBE), using HPMC K100 as a film-forming polymer. Each patch contains 312 µg UBE, with a total phenolic content (TPC) of 178.849 µg and 33.924 µg usnic acid. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for their morphological characterization, followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Pharmacotechnical evaluation involved the measurement of the specific parameters for mucoadhesive oral patches as follows: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time. Thus, each F-UBE-HPMC has 104 ± 4.31 mg, a pH = 7.05 ± 0.04, a disintegration time of 130 ± 4.14 s, a swelling ratio of 272 ± 6.31% after 6 h, and a mucoadhesion time of 102 ± 3.22 min. Then, F-UBE-HPMCs pharmacological effects were investigated using brine shrimp lethality assay (BSL assay) as a cytotoxicity prescreening test, followed by complex flow cytometry analyses on blood cell cultures and oral epithelial squamous cell carcinoma CLS-354 cell line. The results revealed significant anticancer effects by considerably increasing oxidative stress and blocking DNA synthesis in CLS-354 cancer cells. The antimicrobial potential against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 was assessed by a Resazurin-based 96-well plate microdilution method. The patches moderately inhibited both bacteria strains growing and displayed a significant antifungal effect, higher on C. albicans than on C. parapsilosis. All these properties lead to considering F-UBE-HPMC suitable for oral disease prevention and therapy.
Collapse
Affiliation(s)
- Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mirela Adriana Mitu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Adina Magdalena Musuc
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Simona Petrescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Atkinson
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Rusu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Raul-Augustin Mitran
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Aureliana Caraiane
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mariana Aschie
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Eugen Dumitru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Department of Gastroenterology, Emergency Hospital of Constanța, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Victoria Badea
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| |
Collapse
|
8
|
Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods 2022; 11:foods11172670. [PMID: 36076855 PMCID: PMC9455747 DOI: 10.3390/foods11172670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022] Open
Abstract
The successful application of honey in wound care management has been achieved due to honey’s potent antibacterial effects, characterised by its multifactorial action. Impressive clinical efficacy has ignited its further use in diverse clinical disciplines, including stomatology. Indeed, there is increasing usage of honey in dental medicine as a preventive or therapeutic remedy for some periodontal diseases mainly associated with bacteria, such as dental caries, gingivitis and mucositides. Dental caries is undoubtedly a major oral health problem worldwide, with an increasing tendency of incidence. The purpose of this perspective review is to describe the recent progress in the laboratory and clinical use of honey in the prevention of dental caries, with emphasis on the antibacterial and antibiofilm effects of honey. The role of honey in the cariogenic process is also discussed. In addition, the quality of honey and the urgent in vitro evaluation of its antibacterial/antibiofilm properties before clinical use are highlighted. Findings based on data extracted from laboratory studies demonstrate the pronounced antibacterial effect of different honeys against a number of periodontal pathogens, including Streptococcus mutans. Although the promising antibiofilm effects of honey have been reported mainly against S. mutans, these results are limited to very few studies. From a clinical point of view, honey significantly reduces dental plaque; however, it is not superior to the conventional agent. Despite the positive in vitro results, the clinical effectiveness of honey in the prevention of dental caries remains inconclusive since further robust clinical studies are needed.
Collapse
|