1
|
Ewais O, Abdel-Tawab H, El-Fayoumi H, Aboelhadid SM, Al-Quraishy S, Falkowski P, Abdel-Baki AAS. Antioxidant properties of D-limonene and its nanoemulsion form enhance its anticoccidial efficiency in experimentally infected broilers with Eimeria tenella: an in vitro and in vivo study. Vet Res Commun 2024; 48:3711-3725. [PMID: 39235470 DOI: 10.1007/s11259-024-10512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024]
Abstract
The excessive use of conventional medications to treat coccidiosis has led to concerns regarding drug residues in tissues and the emergence of multidrug resistance. Essential oils with anti-inflammatory and antioxidant activities may also have anticoccidial effects. The present study investigated the efficacy of D-limonene and its nanoemulsion form against Eimeria tenella in chickens. An in vitro study was conducted to evaluate the sporulation inhibitory effects of D-limonene on Eimeria tenella oocysts. Five D-limonene concentrations (0.625, 1.25, 2.5, 5, and 10% v/v) were tested alongside positive (10% formalin) and negative (2.5% potassium dichromate) controls. Each ELISA plate well was inoculated with 1200 unsporulated oocysts and incubated at 30 °C for 24, 48, and 72 h. Subsequently, samples were microscopically examined to assess sporulation inhibition and calculate the percentage of sporulated oocysts. For the in vivo study, 125 eight-day-old broiler chicks were divided into five groups of 25 birds each. The control negative group remained uninfected and untreated. The control positive group was challenged with 5 × 104 sporulated Eimeria tenella oocysts. The diclazuril group received 0.2 mg/kg diclazuril in their diet two days prior to, and until 10 days post infection. The D-limonene (DL) and D-limonene nanoemulsion (DLN) groups were challenged with 5 × 104 sporulated E. tenella oocysts at 18 days of age and administered 150 mg/L of their respective treatments in drinking water from day eight until the end of the experiment. Results from the in vitro study demonstrated that D-limonene suppressed oocyst sporulation by 50.83% at its highest concentration of 10%. In the in vivo study, both DL and DLN treated groups exhibited a significant reduction in oocyst output per gram of feces (OPG), along with increased body weight and decreased parasite stages in the cecal tissue. Furthermore, these treatments were associated with elevated levels of antioxidant enzymes such as glutathione peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD), accompanied by a decrease in malondialdehyde (MDA) and nitric oxide (NO) levels. Particularly, DLN treatment remarkably increased the number of goblet cells. In conclusion, D-limonene and its nanoemulsion represent promising alternatives for managing coccidiosis in poultry. They not only effectively control parasites but also promote intestinal health and boost antioxidant defenses.
Collapse
Affiliation(s)
- Osama Ewais
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Heba Abdel-Tawab
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Huda El-Fayoumi
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, 12211, Saudi Arabia
| | - Piotr Falkowski
- Department of Epizootiology and Clinic for Birds and Exotic Animals Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, Wrocław, 50-366, Poland
| | | |
Collapse
|
2
|
Alabrahim OAA, Lababidi JM, Fritzsche W, Azzazy HMES. Beyond aromatherapy: can essential oil loaded nanocarriers revolutionize cancer treatment? NANOSCALE ADVANCES 2024:d4na00678j. [PMID: 39415775 PMCID: PMC11474398 DOI: 10.1039/d4na00678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Cancer, a complex global health burden, necessitates the development of innovative therapeutic strategies. While chemotherapy remains the primary treatment approach, its severe side effects and chemoresistance drive the search for novel alternatives. Essential oils (EOs), consisting of diverse bioactive phytochemicals, offer promise as anticancer agents. However, their limitations, such as instability, limited bioavailability, and non-specific targeting, hinder their therapeutic potential. These challenges were circumvented by utilizing nanoparticles and nanosystems as efficient delivery platforms for EOs. This review highlights the accumulating evidence based on loading EOs into several nanocarriers, including polymeric nanoparticles, nanoemulsions, nanofibers, lipid-based nanocapsules and nanostructures, niosomes, and liposomes, as effective anticancer regimens. It covers extraction and chemical composition of EOs, their mechanisms of action, and targeting strategies to various tumors. Additionally, it delves into the diverse landscape of nanocarriers, including their advantages and considerations for cancer targeting and EO encapsulation. The effectiveness of EO-loaded nanocarriers in cancer targeting and treatment is examined, highlighting enhanced cellular uptake, controlled drug release, and improved therapeutic efficacy. Finally, the review addresses existing challenges and future perspectives, emphasizing the potential for clinical translation and personalized medicine approaches.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Jude Majed Lababidi
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
3
|
Dakhlaoui S, Bourgou S, Zar Kalai F, Hammami M, Essafi M, Jallouli S, Msaada K. Essential oil and its nanoemulsion of Eucalyptus cladocalyx: chemical characterization, antioxidant, anti-inflammatory and anticancer activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2899-2912. [PMID: 37972122 DOI: 10.1080/09603123.2023.2280119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Formulating a nanoemulsion (NE) of essential oil (EO) could enhance its efficiency while requiring lower concentrations. Eucalyptus cladocalyx F. Muell EO was rich in monoterpenes hydrocarbons. NE was prepared and the effect of surfactant (Tween 20, 40 and 80) and shearing time were investigated. The results showed that the best NE was formed using Tween 80 after 25 min of emulsification. Small droplet size (40 nm), low polydispersity index PDI (0.49), and stable zeta potential highlighted the excellent NE stability which was tested under storage conditions for 4 months. The results showed that the antioxidant and anticancer activities of NE were enhanced compared to free EO. Furthermore, NE and EO exhibited high anti-inflammatory effects by inhibiting nitric oxide (NO), Interleukin 6 (IL-6), and tumor necrosis factors alpha (TNF-α) production in liposaccharides (LPS)-induced RAW264.7 cells. In conclusion, a stable Eucalyptus cladocalyx-NE was produced, with improved biological activities.
Collapse
Affiliation(s)
- Sarra Dakhlaoui
- College of Sciences of Tunis, Tunis El Manar University, Tunis, Tunisia
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| | - Soumaya Bourgou
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| | - Feten Zar Kalai
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Majdi Hammami
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| | - Makram Essafi
- Laboratory Transmission, Control and Immunobiology of Infections (LTCII, LR11 IPT02), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Slim Jallouli
- Laboratory of Bioactive Substances (LSBA), Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | - Kamel Msaada
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| |
Collapse
|
4
|
Ellithy MMA, Abdrabo RAM. Plant Based Extract Oil-Based Nano emulsions: Impact on Human Melanoma Cell Line. Asian Pac J Cancer Prev 2024; 25:1663-1671. [PMID: 38809638 PMCID: PMC11318800 DOI: 10.31557/apjcp.2024.25.5.1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Cancer is a challenge for either the patient or the healthcare manager. Treatment protocols based on chemotherapy or radiotherapy, or both are interfering with the patient's life making him suffer rather than being alleviated. This burden pushed the scientists to search for new regimens that may help ameliorate patient as well as doctor inconvenience. Benefits of plant extracts as medical substitutes in cancer management have been proved. New nano formulated drug delivery systems may help overcoming remedy regimens barriers and obstacles. The present research topic aims to evaluate the anticancer power of two plant extracts in nano emulsion formulation on human melanoma cell line. METHODS Carvacrol and rosemary essential oils were obtained, and nano emulsions were formulated. NE were characterized using TEM for charge and size distribution. The A375 human melanoma cell line was cultured and propagated then IC50 of prepared NE was added. Assessment of cell cytotoxicity, effect on angiogenesis and apoptosis were tested. RESULTS After synthesis and characterization, both carvacrol nano emulsion (CNE) and rosemary nano emulsion (RNE) were capable of inhibiting melanoma cell line viability, angiogenesis and they enhanced the expression of caspase-3 proapoptotic marker. CONCLUSION Rosemary and carvacrol extract nano emulsions could be a new revolutionary agent in human melanoma therapy and these formulations can be applied locally.
Collapse
|
5
|
Thalappil MA, Singh P, Carcereri de Prati A, Sahoo SK, Mariotto S, Butturini E. Essential oils and their nanoformulations for breast cancer therapy. Phytother Res 2024; 38:556-591. [PMID: 37919622 DOI: 10.1002/ptr.8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Breast Cancer (BC) is the most prevalent type of cancer in the world. Current treatments include surgery, radiation, and chemotherapy but often are associated with high toxicity to normal tissues, chemoresistance, and relapse. Thus, developing novel therapies which could combat these limitations is essential for effective treatment. In this context, phytochemicals are increasingly getting popular due to their safety profile, ability to efficiently target tumors, and circumvent limitations of existing treatments. Essential Oils (EOs) are mixtures of various phytochemicals which have shown potential anticancer activity in preclinical BC models. However, their clinical translation is limited by factors such as high volatility, low stability, and poor solubility. Nanotechnology has facilitated their encapsulation in a variety of nanostructures and proven to overcome these limitations. In this review, we have efficiently summarized the current knowledge on the anticancer effect of EOs and constituents in both in in vitro and in in vivo BC models. Further, we also provide a descriptive account on the potential of nanotechnology in enhancing the anti-BC activity of EOs and their constituents. The papers discussed in this review were selected using the keywords "antiproliferative Essential Oils in breast cancer," "anticancer activity of Essential Oil in breast cancer," and "cytotoxicity of Essential Oils in breast cancer" performed in PubMed and ScienceDirect databases.
Collapse
Affiliation(s)
- Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Priya Singh
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Özakar E, Alparslan L, Adıgüzel MC, Torkay G, Baran A, Bal-Öztürk A, Sevinç-Özakar R. A Comprehensive Study on Peppermint Oil and Cinnamon Oil as Nanoemulsion: Preparation, Stability, Cytotoxicity, Antimicrobial, Antifungal, and Antioxidant Activity. Curr Drug Deliv 2024; 21:603-622. [PMID: 37309758 DOI: 10.2174/1567201820666230612123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Recent studies have shown that nanoemulsions prepared with essential oils have significant antimicrobial potential against multidrug-resistant pathogens due to increased chemical stability. Nanoemulsion also promotes controlled and sustained release, which increases their bioavailability and efficacy against multidrug-resistant bacteria. OBJECTIVE This study aimed to investigate the antimicrobial, antifungal, antioxidant, and cytotoxicity properties of cinnamon essential oil and peppermint essential oil as nanoemulsions compared to pure forms. For this purpose, analyses of the selected stable nanoemulsions were carried out. METHOD The droplet sizes and zeta potentials of peppermint essential oil nanoemulsions and cinnamon essential oil nanoemulsions were found to be 154.6±1.42 nm and -17.1±0.68 mV and 200.3±4.71 nm and -20.0±0.81 mV, respectively. Although the amount of essential oil used in nanoemulsions was 25% w/w, antioxidant and antimicrobial activities were found to be more effective compared to pure essential oils. RESULTS In cytotoxicity studies on the 3T3 cell line, both essential oil nanoemulsions showed higher cell viability than pure essential oils. At the same time, cinnamon essential oil nanoemulsions exhibited a higher antioxidant property than peppermint essential oil nanoemulsions and showed superiority in the antimicrobial susceptibility test conducted against four bacteria and two fungi. Cell viability tests determined that cinnamon essential oil nanoemulsions showed considerably higher cell viability compared to pure cinnamon essential oil. CONCLUSION These findings indicated that the prepared nanoemulsions in the current study might positively influence the dosing regimen and clinical outcomes of antibiotic therapy.
Collapse
Affiliation(s)
- Emrah Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Levent Alparslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - M Cemal Adıgüzel
- Department of Microbiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Veterinary Vaccine and Biological Product Development Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Gülşah Torkay
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Alper Baran
- Veterinary Vaccine and Biological Product Development Application and Research Center, Atatürk University, Erzurum, Turkey
- Department of Food Processing, Vocational School of Technical Sciences, Atatürk University, Erzurum, Turkey
| | - Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
- Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), Istinye University, Istanbul, Turkey
| | - Rukiye Sevinç-Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| |
Collapse
|
7
|
Miranda SEM, de Alcantara Lemos J, Ottoni FM, Cassali GD, Townsend DM, de Aguiar Ferreira C, Alves RJ, Ferreira LAM, de Barros ALB. Preclinical evaluation of L-fucoside from lapachol-loaded nanoemulsion as a strategy to breast cancer treatment. Biomed Pharmacother 2024; 170:116054. [PMID: 38150876 DOI: 10.1016/j.biopha.2023.116054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023] Open
Abstract
Breast cancer prevails as the most common cancer in women, underscoring an urgent need for more effective therapies. This study explores the potential of our newly developed nanoemulsion containing a novel fucoside derivative of lapachol (NE-F-LapA) as an intravenous treatment strategy. We sought to overcome the solubility issues associated with fucoside with this improved drug delivery strategy that enhances tumor delivery and mitigates other dose-limiting toxicities. Nanoemulsion was prepared and characterized by DLS, zeta potential, encapsulation efficiency, and storage stability. Cytotoxicity against breast cancer cell lines (4T1 and MDA-MB-231) and non-tumor human fibroblasts (NTHF) were evaluated. In vivo assays included antitumoral activity performance and acute systemic toxicity in mice models. NE-F-LapA was synthesized and optimized to 200 nm size, - 20 mV zeta potential, and near-complete (>98%) drug encapsulation. Stability exceeded 6 months, and biological fluid exposure maintained suitable properties for administration. In vitro, NE-F-LapA showed high toxicity (3 µM) against 4T1 and MDA-MB-231, enhanced five times the breast cancer cell uptake and three times the selectivity when compared to normal cells. Systemic toxicity assessment in mice revealed no concerning hematological or biochemical changes. Finally, in a 4T1 breast tumor model, NE-F-LapA significantly inhibited growth by 50% of the subcutaneous 4T1 tumor and reduced lung metastases 5-fold versus control. Overall, tailored nanoemulsification of the lapachol derivative enabled effective intravenous administration and improved efficacy over the free drug, indicating promise for enhanced breast cancer therapy pending further optimization.
Collapse
Affiliation(s)
- Sued Eustaquio Mendes Miranda
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Janaina de Alcantara Lemos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Flaviano Melo Ottoni
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Carolina de Aguiar Ferreira
- Departments of Radiology, Pharmacology & Toxicology and Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Ricardo Jose Alves
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas Antonio Miranda Ferreira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Andre Luis Branco de Barros
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| |
Collapse
|
8
|
Aghabagherzadeh M, Karimi E, Zareian M. Folic Acid-Conjugated Chitosan-Coated Solid Lipid Nanoparticles: Precision Targeting of Artemisia vulgaris Essential Oils for Anticancer Therapy. Chem Biodivers 2024; 21:e202300187. [PMID: 38164058 DOI: 10.1002/cbdv.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
In this study, we developed Solid Lipid Nanoparticles (SLN-NPs) loaded with Artemisia vulgaris essential oil and coated with folic acid-chitosan (AVEO-SCF-NPs) to enhance drug delivery in biotechnology and pharmaceutical sectors. AVEO-SCF-NPs were synthesized using homogenization and ultra-sonication methods and comprehensively characterized. These nanoparticles exhibited a particle size of 253.67 nm, Polydispersity Index (PDI) of 0.26, zeta potential (ζ-p) of +39.96 mV, encapsulation efficiency (%EE) of 99.0 %, and folic acid binding efficiency (% FB) of 46.25 %. They effectively inhibited MCF-7, HT-29, and PC-3 cancer cells with IC50 values of 48.87 μg/mL, 88.48 μg/mL, and 121.34 μg/mL, respectively, and demonstrated antibacterial properties against Gram-positive strains. AVEO-SCF-NPs also exhibited scavenging effects on ABTS (IC50 : 203.83 μg/mL) and DPPH (IC50: 680.86 μg/mL) free radicals and inhibited angiogenesis, as confirmed through CAM and qPCR assays. Furthermore, these nanoparticles induced apoptosis, evidenced by up-regulation of caspase 3 and 9, down-regulation of TNF-α genes, and an increase in SubG1 phase cells. The high loading capacity of SCF-NPs for AVEO, coupled with their multifaceted biological properties, highlights AVEO-SCF-NPs as promising candidates for cancer therapy in the biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohsen Zareian
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
9
|
Hu Y, Song J, Feng A, Li J, Li M, Shi Y, Sun W, Li L. Recent Advances in Nanotechnology-Based Targeted Delivery Systems of Active Constituents in Natural Medicines for Cancer Treatment. Molecules 2023; 28:7767. [PMID: 38067497 PMCID: PMC10708032 DOI: 10.3390/molecules28237767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Owing to high efficacy and safety, natural medicines have found their way into the field of cancer therapy over the past few decades. However, the effective ingredients of natural medicines have shortcomings of poor solubility and low bioavailability. Nanoparticles can not only solve the problems above but also have outstanding targeting ability. Targeting preparations can be classified into three levels, which are target tissues, cells, and organelles. On the premise of clarifying the therapeutic purpose of drugs, one or more targeting methods can be selected to achieve more accurate drug delivery and consequently to improve the anti-tumor effects of drugs and reduce toxicity and side effects. The aim of this review is to summarize the research status of natural medicines' nano-preparations in tumor-targeting therapies to provide some references for further accurate and effective cancer treatments.
Collapse
Affiliation(s)
- Yu Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Jizheng Song
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Anjie Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Jieyu Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Mengqi Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Yu Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Wenxiu Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| |
Collapse
|
10
|
Alshehri S, Bukhari SI, Imam SS, Hussain A, Alghaith AF, Altamimi MA, AlAbdulkarim AS, Almurshedi A. Formulation of Piperine-Loaded Nanoemulsion: In Vitro Characterization, Ex Vivo Evaluation, and Cell Viability Assessment. ACS OMEGA 2023; 8:22406-22413. [PMID: 37396261 PMCID: PMC10308402 DOI: 10.1021/acsomega.2c08187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/01/2023] [Indexed: 07/04/2023]
Abstract
Piperine is an alkaloid, but its therapeutic efficacy is limited due to poor aqueous solubility. In this study, piperine nanoemulsions were prepared using oleic acid (oil), Cremophore EL (surfactant), and Tween 80 (co-surfactant) using the high-energy ultrasonication approach. The optimal nanoemulsion (N2) was further evaluated using transmission electron microscopy, release, permeation, antibacterial, and cell viability studies based on minimal droplet size and maximum encapsulation efficiency. The prepared nanoemulsions (N1-N6) showed a transmittance of more than 95%, a mean droplet size between 105 ± 4.11 and 250 ± 7.4 nm, a polydispersity index of 0.19 to 0.36, and a ζ potential of -19 to -39 mV. The optimized nanoemulsion (N2) showed significantly improved drug release and permeation compared with pure piperine dispersion. The nanoemulsions were stable in the tested media. The transmission electron microscopy image showed a spherical and dispersed nanoemulsion droplet. The antibacterial and cell line results of piperine nanoemulsions were significantly better than the pure piperine dispersion. The findings suggested that piperine nanoemulsions may be a more advanced nanodrug delivery system than conventional ones.
Collapse
|
11
|
Yousefi M, Khanniri E, Sohrabvandi S, Khorshidian N, Mortazavian AM. Encapsulation of Heracleum persicum essential oil in chitosan nanoparticles and its application in yogurt. Front Nutr 2023; 10:1130425. [PMID: 37360296 PMCID: PMC10287953 DOI: 10.3389/fnut.2023.1130425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Heracleum percicum essential oil (HEO) at various levels was encapsulated in chitosan nanoparticles and its potential application in yogurt was investigated. The values obtained for encapsulation efficiency, loading capacity, mean particle size, and zeta potential of nanoparticles were 39.12-70.22%, 9.14-14.26%, 201.23-336.17 nm, and + 20.19-46.37 mV, respectively. The nanoparticles had spherical shape with some holes as a result of drying process. In vitro release studies in acidic solution and phosphate buffer solution indicated an initial burst effect followed by slow release with higher release rate in acidic medium. Results of antibacterial activity revealed that Staphylococcus aureus and Salmonella typhimurium with inhibition zones of 21.04-38.10 and 9.39-20.56 mm were the most sensitive and resistant bacteria to HEO, respectively. Incorporation of encapsulated HEO into yogurt decreased pH and increased titratable acidity due to stimulation of starters' activity. Interaction of nanoparticles with proteins decreased syneresis in yogurt. Regarding antioxidant activity, a higher value was observed in yogurt containing encapsulated HEO after 14 days of storage due to degradation and release of essential oil from nanoparticles. In conclusion, application of HEO nanoparticles in yogurt could be a promising approach for development of functional food products such as yogurt with enhanced antioxidant properties.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Elham Khanniri
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Chen Y, Wang J, Xu J, Zhang J, Xu S, Zhang Q, Huang J, Peng J, Xu H, Du Q, Gong Z. Fabrication of a Polysaccharide-Protein/Protein Complex Stabilized Oral Nanoemulsion to Facilitate the Therapeutic Effects of 1,8-Cineole on Atherosclerosis. ACS NANO 2023; 17:9090-9109. [PMID: 37172004 DOI: 10.1021/acsnano.2c12230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Atherosclerosis (AS) is a systemic disease characterized by lipid deposition in the blood vessel wall that urgently requires effective and safe therapeutic drugs for long-term treatment. An essential oil monomer-1,8-cineole (CIN) with ameliorative effects on vascular injuries has considerable potential for preventing the progression of AS because of its antioxidant, anti-inflammation, and cholesterol regulatory effects. However, the high volatility and instability of CIN result in low oral bioavailability and a short half-life, thereby limiting its clinical application. We formulated a nanoemulsion using a polysaccharide-protein/protein complex (dextran-bovine serum albumin/protamine, DEX5k-BSA/PTM) as an emulsifier, with vitamin B12 (VB12) as the ligand to facilitate the transportation across the small intestine. An emulsion preparation method using a microjet followed by ultraviolet irradiation was developed to obtain the CIN-loaded oral nanoemulsion CIN@DEX5k-BSA/PTM/VB12. The nanoemulsion improved the stability of CIN both in vitro and in vivo, prolonged the retention time in the gastrointestinal tract (GIT), and enhanced the permeability across the mucus layer and intestinal epithelial cells to increase oral bioavailability and plaque accumulation of CIN. Validated in an AS mouse model, CIN@DEX5k-BSA/PTM/VB12 achieved prominent therapeutic efficacy combating AS. This study highlights the advantages of DEX5k-BSA/PTM and VB12 in the development of nanoemulsions for CIN and provides a promising oral nanoplatform for the delivery of essential oils.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | |
Collapse
|
13
|
Tit DM, Bungau SG. Antioxidant Activity of Essential Oils. Antioxidants (Basel) 2023; 12:antiox12020383. [PMID: 36829942 PMCID: PMC9952212 DOI: 10.3390/antiox12020383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
In recent few years, the high efficacy of herbal antioxidant products in various diseases has been reported [...].
Collapse
Affiliation(s)
- Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence:
| |
Collapse
|
14
|
Jampilek J, Kralova K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022; 14:2681. [PMID: 36559176 PMCID: PMC9781429 DOI: 10.3390/pharmaceutics14122681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The use of natural compounds is becoming increasingly popular among patients, and there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts. However, the disadvantages of natural compounds, especially essential oils, are their instability, limited bioavailability, volatility, and often irritant/allergenic potential. However, these active substances can be stabilized by encapsulation and administered in the form of nanoparticles. This brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion into the aforesaid formulations improving their stability and bioavailability and/or therapeutic profile, they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations with the aim to achieve synergistic effect in chemotherapy is discussed.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
15
|
Salehi F, Behboudi H, Salehi E, Ardestani SK, Piroozmand F, Kavoosi G. Apple pectin-based Zataria multiflora essential oil (ZEO) nanoemulsion: An approach to enhance ZEO DNA damage induction in breast cancer cells as in vitro and in silico studies reveal. Front Pharmacol 2022; 13:946161. [PMID: 36133807 PMCID: PMC9483017 DOI: 10.3389/fphar.2022.946161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Zataria multiflora essential oil (ZEO) is a natural complex of compounds with a high apoptotic potential against breast cancer cells and minor toxicity toward normal cells; however, similar to many essential oils, ZEO utilization in pharmaceutical industries has limitations due to its labile and sensitive ingredients. Nanoemulsification based on natural polymers is one approach to overcome this issue. In this study, an apple pectin-ZEO nanoemulsion (AP-ZEONE) was prepared and its morphology, FTIR spectra, and physical properties were characterized. Furthermore, it was shown that AP-ZEONE substantially suppresses the viability of MDA-MB-231, T47D, and MCF-7 breast cancer cells. AP-ZEONE significantly induced apoptotic morphological alterations and DNA fragmentation as confirmed by fluorescent staining and TUNEL assay. Moreover, AP-ZEONE induced apoptosis in MDA-MB-231 cells by loss of mitochondrial membrane potential (ΔΨm) associated with the accumulation of reactive oxygen species (ROS), G2/M cell cycle arrest, and DNA strand breakage as flow cytometry, DNA oxidation, and comet assay analysis revealed, respectively. Spectroscopic and computational studies also confirmed that AP-ZEONE interacts with genomic DNA in a minor groove/partial intercalation binding mode. This study demonstrated the successful inhibitory effect of AP-ZEONE on metastatic breast cancer cells, which may be beneficial in the therapy process.
Collapse
Affiliation(s)
- Fahimeh Salehi
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Faculty of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Elaheh Salehi
- Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sussan K. Ardestani
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Firoozeh Piroozmand
- Department of Microbiology, College of Science, University of Tehran, Tehran, Iran
| | - Gholamreza Kavoosi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- *Correspondence: Gholamreza Kavoosi,
| |
Collapse
|
16
|
Nanomedicine as an Emerging Technology to Foster Application of Essential Oils to Fight Cancer. Pharmaceuticals (Basel) 2022; 15:ph15070793. [PMID: 35890092 PMCID: PMC9320655 DOI: 10.3390/ph15070793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022] Open
Abstract
Natural prodrugs extracted from plants are increasingly used in many sectors, including the pharmaceutical, cosmetic, and food industries. Among these prodrugs, essential oils (EOs) are of particular importance. These biologically active volatile oily liquids are produced by medicinal and aromatic plants and characterized by a distinctive odor. EOs possess high anticancer, antibacterial, antiviral, and antioxidant potential but often are associated with low stability; high volatility; and a high risk of deterioration with exposure to heat, humidity, light, or oxygen. Furthermore, their bioavailability is limited because they are not soluble in water, and enhancements are needed to increase their potential to target specific cells or tissues, as well as for controlled release. Nanomedicine, the application of nanotechnology in medicine, may offer efficient solutions to these problems. The technology is based on creating nanostructures in which the natural prodrug is connected to or encapsulated in nanoparticles or submicron-sized capsules that ensure their solubility in water and their targeting properties, as well as controlled delivery. The potential of EOs as anticancer prodrugs is considerable but not fully exploited. This review focusses on the recent progress towards the practical application of EOs in cancer therapy based on nanotechnology applications.
Collapse
|