1
|
Elizondo-Luevano JH, Quintanilla-Licea R, Monroy-García IN, Kačániová M, Castillo-Velázquez U, Bazaldúa-Rodríguez AF, Garza-Vega LM, Torres-Hernández ÁD, Chávez-Montes A. Assessment of Anticancer Properties of Argemone mexicana L. and Berberine: A Comparative Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1374. [PMID: 38794444 PMCID: PMC11125357 DOI: 10.3390/plants13101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Argemone mexicana L. has been used in traditional Mexican medicine. Among its bioactive constituents, berberine (BER) has garnered attention for its cytotoxic properties against different tumor cell lines. This study investigates the in vitro toxicity against HEP-G2 (human hepatocellular carcinoma) and murine lymphoma (L5178Y-R) cells using the MTT assay of the methanol extract (AmexM), sub-partitions of A. mexicana, and BER. Selectivity indices (SIs) were determined by comparing their cytotoxic effects on VERO (monkey kidney epithelial) and PBMC (human peripheral blood mononuclear) non-tumoral cells. Additionally, the anti-hemolytic effect of these treatments was assessed using the AAPH method. The treatment with the most promising activity against tumor cells and anti-hemolytic efficacy underwent further evaluation for toxicity in Artemia salina and antioxidant activities using DPPH, ABTS, and FRAP assays. BER demonstrated an IC50 = 56.86 µg/mL in HEP-G2 cells and IC50 < 5.0 µg/mL in L5178Y-R cells, with SI values of 15.97 and >5.40 in VERO and PBMC cells, respectively. No significant hemolytic effects were observed, although AmexM and BER exhibited the highest anti-hemolytic activity. BER also demonstrated superior antioxidant efficacy, with lower toxicity in A. salina nauplii compared to the control. Additionally, BER significantly attenuated nitric oxide production. This study highlights the antiproliferative effects of A. mexicana, particularly BER, against HEP-G2 and L5178Y-R tumor cell lines, along with its selectivity towards normal cells. Furthermore, its anti-hemolytic and antioxidant potentials were demonstrated, suggesting that BER is a promising candidate for potent chemotherapeutic agents.
Collapse
Affiliation(s)
- Joel H Elizondo-Luevano
- Department of Chemistry, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Ramiro Quintanilla-Licea
- Department of Chemistry, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Imelda N Monroy-García
- Department of Chemical and Biochemical Engineering, Instituto Tecnológico de Los Mochis, Tecnológico Nacional de México (ITLM-TecNM), Juan de Dios Bátiz y 20 de Noviembre, Los Mochis 81259, Sinaloa, Mexico
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| | - Uziel Castillo-Velázquez
- Department of Immunology, Facultad de Medicina Veterinaria y Zootecnia, UANL, Ex Hacienda del Cañada, Cd. General Escobedo C.P. 66054, Nuevo León, Mexico
| | - Aldo F Bazaldúa-Rodríguez
- Department of Chemistry, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Lourdes M Garza-Vega
- Department of Chemistry, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Ángel D Torres-Hernández
- Department of Microbiology and Immunology, FCB, UANL, Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Abelardo Chávez-Montes
- Department of Chemistry, Facultad de Ciencias Biológicas (FCB), Universidad Autónoma de Nuevo León (UANL), Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| |
Collapse
|
2
|
Castro ET, Alves AG, de Bittencourt Maia D, Magalhães LS, Paim MP, Penteado F, Gomes CS, Lenardão EJ, Brüning CA, Bortolatto CF. Bioactivity of selenium-containing pyridinium salts: Prospecting future pharmaceutical constituents to treat liver diseases involving oxidative stress. J Biochem Mol Toxicol 2024; 38:e23535. [PMID: 37711070 DOI: 10.1002/jbt.23535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/04/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Redox imbalance leads to oxidative stress that causes irreversible cellular damage. The incorporation of the antioxidant element selenium (Se) in the structure of pyridinium salts has been used as a strategy in chemical synthesis and can be useful in drug development. We investigated the antioxidant activity of Se-containing pyridinium salts (named Compounds 3A, 3B, and 3C) through in vitro tests. We focused our study on liver protein carbonylation, liver lipoperoxidation, free radical scavenging activity (1,1-diphenyl-2-picryl-hydrazil [DPPH]; 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid [ABTS]), and enzyme-mimetic activity assays (glutathione S-transferase [GST]-like; superoxide dismutase [SOD]-like). In addition, 2-(4-chlorophenyl)-2-oxoethyl)-2-((phenylselanyl)methyl)pyridin-1-ium bromide (3C) was selected to evaluate the acute oral toxicity in mice due to the best antioxidant profile. The three compounds were effective in reducing the levels of protein carbonylation and lipoperoxidation in the liver in a µM concentration range. All compounds demonstrated scavenger activity of DPPH and ABTS radicals, and GST-like action. No significant effects were detected in the SOD-like assay. Experimental data also showed that the acute oral treatment of mice with Compound 3C (50 and 300 mg/kg) did not cause mortality or change markers of liver and kidney functions. In summary, our findings reveal the antioxidant potential of Se-containing pyridinium salts in liver tissue, which could be related to their radical scavenging ability and mimetic action on the GST enzyme. They also demonstrate a low toxicity potential for Compound 3C. Together, the promising results open space for future studies on the therapeutic application of these molecules.
Collapse
Affiliation(s)
- Ediandra T Castro
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Amália G Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Daniela de Bittencourt Maia
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Larissa S Magalhães
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Mariana P Paim
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Filipe Penteado
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Caroline S Gomes
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Eder J Lenardão
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - César A Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Cristiani F Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| |
Collapse
|
3
|
Bhavani GV, Kondapuram SK, Shamsudeen AF, Coumar MS, Selvin J, Kannan T. Synthesis, antitubercular evaluation, and molecular docking studies of hybrid pyridinium salts derived from isoniazid. Drug Dev Res 2023; 84:470-483. [PMID: 36744647 DOI: 10.1002/ddr.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 02/07/2023]
Abstract
In the quest to develop potent inhibitors for Mycobacterium tuberculosis, novel isoniazid-based pyridinium salts were designed, synthesized, and tested for their antimycobacterial activities against the H37 Rv strain of Mycobacterium tuberculosis using rifampicin as a standard. The pyridinium salts 4k, 4l, and 7d showed exceptional antimycobacterial activities with MIC90 at 1 µg/mL. The in vitro cytotoxicity and pharmacokinetics profiles of these compounds were established for the identification of a lead molecule using in vivo efficacy proof-of-concept studies and found that the lead compound 4k possesses LC50 value at 25 µg/mL. The in vitro antimycobacterial activity results were further supported by in silico studies with good binding affinities ranging from -9.8 to -11.6 kcal/mol for 4k, 4l, and 7d with the target oxidoreductase DprE1 enzyme. These results demonstrate that pyridinium salts derived from isoniazid can be a potentially promising pharmacophore for the development of novel antitubercular candidates.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
4
|
Study of the Electrochemical Behavior of N-Substituted-4-Piperidones Curcumin Analogs: A Combined Experimental and Theoretical Approach. Int J Mol Sci 2022; 23:ijms232315043. [PMID: 36499370 PMCID: PMC9736124 DOI: 10.3390/ijms232315043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The electrochemical behavior of N-methyl- and N-benzyl-4-piperidone curcumin analogs were studied experimentally and theoretically. The studied compounds present different substituents at the para position in the phenyl rings (-H, -Br, -Cl, -CF3, and -OCH3). We assessed their electrochemical behavior by differential pulse and cyclic voltammetry, while we employed density functional theory (DFT) M06 and M06-2x functionals along with 6-311+G(d,p) basis set calculations to study them theoretically. The results showed that compounds suffer a two-electron irreversible oxidation in the range of 0.72 to 0.86 V, with surface concentrations ranging from 1.72 × 10-7 to 5.01 × 10-7 mol/cm2. The results also suggested that the process is diffusion-controlled for all compounds. M06 DFT calculations showed a better performance than M06-2x to obtain oxidation potentials. We found a good correlation between the experimental and theoretical oxidation potential for N-benzyl-4-piperidones (R2 = 0.9846), while the correlation was poor for N-methyl-4-piperidones (R2 = 0.3786), suggesting that the latter suffer a more complex oxidation process. Calculations of the BDEs for labile C-H bonds in the compounds suggested that neither of the two series of compounds has a different tendency for a proton-coupled electron transfer (PCET) oxidation process. It is proposed that irreversible behavior is due to possible dimerization of the compounds by Shono-type oxidation.
Collapse
|
5
|
Yin Y, Tan Y, Wei X, Li X, Chen H, Yang Z, Tang G, Yao X, Mi P, Zheng X. Recent advances of curcumin derivatives in breast cancer. Chem Biodivers 2022; 19:e202200485. [PMID: 36069208 DOI: 10.1002/cbdv.202200485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022]
Abstract
Curcumin is a potential plant-derived drug for the treatment of breast cancer. Poor solubility and bioavailability are the main factors that limit its clinical application. Various structural modification strategies have been developed to improve the anti-breast cancer activity of curcumin. This review focuses on the difference of modification sites and heterocyclic/non-heterocyclic modifications to systematically summarize curcumin derivatives with better anti-breast cancer activity.
Collapse
Affiliation(s)
- Ying Yin
- University of South China, Department of pharmacy, University of South China, 421001, Hengyang, CHINA
| | - Yan Tan
- University of South China, Department of Pharmacy, University of South China, Hengyang, CHINA
| | - Xueni Wei
- University of South China, Department of Pharmacy, University of South China, Hengyang, CHINA
| | - Xiaoshun Li
- University of South China, Department of Pharmacy, University of South China, Hengyang, CHINA
| | - Hongfei Chen
- University of South China, Department of Pharmacy, University of South China, Hengyang, CHINA
| | - Zehua Yang
- University of South China, Department of Pharmacy, University of South China, Hengyang, CHINA
| | - Guotao Tang
- University of South China, Department of Pharmacy, University of South China, Hengyang, CHINA
| | - Xu Yao
- University of South China, Department of Pharmacy, University of South China, Hengyang, CHINA
| | - Pengbin Mi
- University of South China, Department of Pharmacy, , Hengyang, CHINA
| | - Xing Zheng
- University of South China, Hunan Provincial Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan421001, China, 421001, Hengyang, CHINA
| |
Collapse
|