1
|
Paik K, Na JI, Huh CH, Shin JW. Particulate Matter and Its Molecular Effects on Skin: Implications for Various Skin Diseases. Int J Mol Sci 2024; 25:9888. [PMID: 39337376 PMCID: PMC11432173 DOI: 10.3390/ijms25189888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Particulate matter (PM) is a harmful air pollutant composed of chemicals and metals which affects human health by penetrating both the respiratory system and skin, causing oxidative stress and inflammation. This review investigates the association between PM and skin disease, focusing on the underlying molecular mechanisms and specific disease pathways involved. Studies have shown that PM exposure is positively associated with skin diseases such as atopic dermatitis, psoriasis, acne, and skin aging. PM-induced oxidative stress damages lipids, proteins, and DNA, impairing cellular functions and triggering inflammatory responses through pathways like aryl hydrocarbon receptor (AhR), NF-κB, and MAPK. This leads to increased production of inflammatory cytokines and exacerbates skin conditions. PM exposure exacerbates AD by triggering inflammation and barrier disruption. It disrupts keratinocyte differentiation and increases pro-inflammatory cytokines in psoriasis. In acne, it increases sebum production and inflammatory biomarkers. It accelerates skin aging by degrading ECM proteins and increasing MMP-1 and COX2. In conclusion, PM compromises skin health by penetrating skin barriers, inducing oxidative stress and inflammation through mechanisms like ROS generation and activation of key pathways, leading to cellular damage, apoptosis, and autophagy. This highlights the need for protective measures and targeted treatments to mitigate PM-induced skin damage.
Collapse
Affiliation(s)
- Kyungho Paik
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
2
|
Park KD, Kwack MH, Yoon HJ, Lee WJ. Effects of Siegesbeckia herba extract against particulate matter 10 (PM 10 ) in skin barrier-disrupted mouse models. Skin Res Technol 2024; 30:e13615. [PMID: 38391025 PMCID: PMC10885184 DOI: 10.1111/srt.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVES Skin barrier disruption is a significant problem of the older population in an aging society. It is characterized by increased transepidermal water loss and decreased skin water content, and particulate matter (PM) is a social issue that can contribute to the exacerbation of skin inflammation. Thus, addressing this problem is urgent. METHODS Skin barrier-disrupted mouse models were induced by two methods using acetone application or tape-stripping. This study investigated the antioxidative and anti-inflammatory properties of the Siegesbeckia herba extract (SHE) on PM-induced changes in skin barrier-disrupted mouse models. To examine changes in skin water content, inflammatory cytokines, and keratinocyte differentiation markers, mouse models were treated with vehicle 100 μL, PM10 100 μL (100 μg/mL), SHE 100 μL, or PM10 100 μL (100 μg/mL) plus SHE 100 μL. RESULTS SHE preserved skin hydration in the skin barrier-disrupted mouse models regardless of the presence of PM10 . SHE also inhibited the upregulation of inflammatory cytokines such as interleukin (IL)-1β, IL-4, IL-6, IL-8, and tumor necrosis factor-α and normalized the downregulation of keratinocyte differentiation markers against PM10 in skin barrier-disrupted mouse models. CONCLUSIONS This study elucidated the therapeutic effects of SHE against PM10 in skin barrier-disrupted mouse models.
Collapse
Affiliation(s)
- Kyung Duck Park
- Department of Dermatology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Mi Hee Kwack
- Department of Immunology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Hyo Jin Yoon
- Department of Dermatology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Weon Ju Lee
- Department of Dermatology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
3
|
Kim JH, Kwack MH, Lee WJ. Effects of antioxidants on skin hydration, inflammatory cytokines, and keratinocyte differentiation markers in a PM 10-exposed skin barrier-disrupted mouse model. Int J Immunopathol Pharmacol 2024; 38:3946320241303860. [PMID: 39635715 PMCID: PMC11618901 DOI: 10.1177/03946320241303860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Given that particulate matter (PM) has an established role in inducing oxidative stress, inflammation, and skin aging, it is plausible that PM could exacerbate inflammatory skin conditions such as xerosis. Xerosis represents a significant dermatological concern among older adults within aging populations. We conducted an investigation into the efficacy of antioxidants, such as dieckol, punicalagin, epigallocatechin gallate (EGCG), and resveratrol, against PM10 in a skin barrier-disrupted mouse model. A skin barrier-disrupted mouse model was induced by tape stripping. This study investigated the antioxidative and anti-inflammatory properties of antioxidants on PM-induced changes using the skin barrier-disrupted mouse model. Tape strips were attached to the back of 7-week-old nude mice and removed quickly. To investigate variations in skin hydration, levels of inflammatory cytokines, and indicators of keratinocyte differentiation, mice underwent treatment with several compounds: a control vehicle (100 μL), PM10 100 μL (100 μg/mL), PM10 100 μL (100 μg/mL) with antioxidants 100 μL (Punicalagin 5 μM, Dieckol 5 μM, EGCG 1 μM, resveratol 1 μM) for 1 week. To assess their effects, different analysis were conducted using measurements of skin moisture, real-time polymerase chain reaction, enzyme-linked immunosorbent assay for detecting inflammatory cytokines, and immunofluorescence staining to identify markers of keratinocyte differentiation. While PM10 decreased water content in disrupted skin, all antioxidants preserved skin hydration in the skin barrier-disrupted mice, regardless of the presence of PM10. All antioxidants also inhibited the upregulation of inflammatory cytokines, such as interleukin (IL)-1β, IL-4, IL-6, IL-8, and tumor necrosis factor-alpha and normalized the downregulation of keratinocyte differentiation markers against PM10 in skin barrier-disrupted mice. This study elucidated the protective effects of antioxidants-namely, punicalagin, dieckol, EGCG, and resveratrol-in mitigating the impact of PM10 on skin barrier integrity and inflammation in a disrupted skin barrier mouse model, highlighting their potential utility in dermatological treatments.
Collapse
Affiliation(s)
- Jin Ho Kim
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Weon Ju Lee
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
4
|
Chao L, Feng B, Liang H, Zhao X, Song J. Particulate matter and inflammatory skin diseases: From epidemiological and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167111. [PMID: 37716690 DOI: 10.1016/j.scitotenv.2023.167111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Epidemiological and toxicological studies have confirmed that exposure to atmospheric particulate matter (PM) could affect our cardiovascular and respiratory systems. Recent studies have shown that PM can penetrate the skin and cause skin inflammation, but the evidence is limited and contradictory. As the largest outermost surface of the human body, the skin is constantly exposed to the environment. The aim of this study was to assess the relationship between PM and inflammatory skin diseases. Most epidemiological studies have provided positive evidence for outdoor, indoor, and wildfire PM and inflammatory skin diseases. The effects of PM exposure during pregnancy and inflammatory skin diseases in offspring are heterogeneous. Skin barrier dysfunction, Oxidative stress, and inflammation may play a critical role in the underlying mechanisms. Finally, we summarize some interventions to alleviate PM-induced inflammatory skin diseases, which may contribute to public health welfare. Overall, PM is related to inflammatory skin diseases via skin barrier dysfunction, oxidative stress, and inflammation. Appropriate government interventions are beneficial.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Bin Feng
- Environmental Health Section, Xinxiang Health Technology Supervision Center, School of Management, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haiyan Liang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Xiangmei Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
5
|
Jie XL, Luo ZR, Yu J, Tong ZR, Li QQ, Wu JH, Tao Y, Feng PS, Lan JP, Wang P. Pi-Pa-Run-Fei-Tang alleviates lung injury by modulating IL-6/JAK2/STAT3/IL-17 and PI3K/AKT/NF-κB signaling pathway and balancing Th17 and Treg in murine model of OVA-induced asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116719. [PMID: 37268260 DOI: 10.1016/j.jep.2023.116719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pi-Pa-Run-Fei-Tang (PPRFT) is an empirical TCM prescription for treating asthma. However, the underlying mechanisms of PPRFT in asthma treatment have yet to be elucidated. Recent advances have revealed that some natural components could ameliorate asthma injury by affecting host metabolism. Untargeted metabolomics can be used to better understand the biological mechanisms underlying asthma development and identify early biomarkers that can help advance treatment. AIM OF THE STUDY The aim of this study was to verification the efficacy of PPRFT in the treatment of asthma and to preliminarily explore its mechanism. MATERIALS AND METHODS A mouse asthma model was built by OVA induction. Inflammatory cell in BALF was counted. The level of IL-6, IL-1β, and TNF-α in BALF were measured. The levels of IgE in the serum and EPO, NO, SOD, GSH-Px, and MDA in the lung tissue were measured. Furthermore, pathological damage to the lung tissues was detected to evaluate the protective effects of PPRFT. The serum metabolomic profiles of PPRFT in asthmatic mice were determined by GC-MS. The regulatory effects on mechanism pathways of PPRFT in asthmatic mice were explored via immunohistochemical staining and western blotting analysis. RESULTS PPRFT displayed lung-protective effects through decreasing oxidative stress, airway inflammation, and lung tissue damage in OVA-induced mice, which was demonstrated by decreasing inflammatory cell levels, IL-6, IL-1β, and TNF-α levels in BALF, and IgE levels in serum, decreasing EPO, NO, and MDA levels in lung tissue, elevating SOD and GSH-Px levels in lung tissue and lung histopathological changes. In addition, PPRFT could regulate the imbalance in Th17/Treg cell ratios, suppress RORγt, and increase the expression of IL-10 and Foxp3 in the lung. Moreover, PPRFT treatment led to decreased expression of IL-6, p-JAK2/Jak2, p-STAT3/STAT3, IL-17, NF-κB, p-AKT/AKT, and p-PI3K/PI3K. Serum metabolomics analysis revealed that 35 metabolites were significantly different among different groups. Pathway enrichment analysis indicated that 31 pathways were involved. Moreover, correlation analysis and metabolic pathway analysis identified three key metabolic pathways: galactose metabolism; tricarboxylic acid cycle; and glycine, serine, and threonine metabolism. CONCLUSION This research indicated that PPRFT treatment not only attenuates the clinical symptoms of asthma but is also involved in regulating serum metabolism. The anti-asthmatic activity of PPRFT may be associated with the regulatory effects of IL-6/JAK2/STAT3/IL-17 and PI3K/AKT/NF-κB mechanistic pathways.
Collapse
Affiliation(s)
- Xiao-Lu Jie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zi-Rui Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jin Yu
- Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., Hangzhou, 310014, China
| | - Zhe-Ren Tong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiao-Qiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jia-Hui Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pei-Shi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ji-Ping Lan
- Experiment Center for Teaching & Learning Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Marko M, Pawliczak R. Resveratrol and Its Derivatives in Inflammatory Skin Disorders-Atopic Dermatitis and Psoriasis: A Review. Antioxidants (Basel) 2023; 12:1954. [PMID: 38001807 PMCID: PMC10669798 DOI: 10.3390/antiox12111954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Atopic dermatitis (AD) and psoriasis are inflammatory skin diseases whose prevalence has increased worldwide in recent decades. These disorders contribute to patients' decreased quality of life (QoL) and constitute a socioeconomic burden. New therapeutic options for AD and psoriasis based on natural compounds are being investigated. These include resveratrol (3,5,40-trihydroxystilbene) and its derivatives, which are produced by many plant species, including grapevines. Resveratrol has gained interest since the term "French Paradox", which refers to improved cardiovascular outcomes despite a high-fat diet in the French population, was introduced. Resveratrol and its derivatives have demonstrated various health benefits. In addition to anti-cancer, anti-aging, and antibacterial effects, there are also anti-inflammatory and antioxidant effects that can affect the molecular pathways of inflammatory skin disorders. A comprehensive understanding of these mechanisms may help develop new therapies. Numerous in vivo and in vitro studies have been conducted on the therapeutic properties of natural compounds. However, regarding resveratrol and its derivatives in treating AD and psoriasis, there are still many unexplained mechanisms and a need for clinical trials. Considering this, in this review, we discuss and summarize the most critical research on resveratrol and its derivatives in animal and cell models mimicking AD and psoriasis.
Collapse
Affiliation(s)
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Division of Biomedical Science, Medical University of Lodz, 7/9 Zeligowskiego St., 90-752 Lodz, Poland
| |
Collapse
|
7
|
Ma X, Kuai L, Song J, Luo Y, Ru Y, Wang M, Gao C, Jiang W, Liu Y, Bai Y, Li B. Therapeutic effects and mechanisms of Ku-Gan formula on atopic dermatitis: A pilot clinical study and modular pharmacology analysis with animal validation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116194. [PMID: 36716903 DOI: 10.1016/j.jep.2023.116194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atopic dermatitis (AD) is a persistent, recurrent inflammatory skin disorder with a rapid upward trend worldwide. The first-line treatment for AD consists of topical medicines such as topical corticosteroids (TCSs). However, long-term use of conventional topical medicine results in side effects and recurrence, presenting therapeutic challenges for the management of AD. Ku-Gan formula (KG) has been extensively used to treat skin diseases since the Song dynasty. In particular, topical administration of the KG alleviates the cutaneous symptoms of AD and reduces recurrence rates with a good safety profile; however, the mechanisms of the KG's action remain unknown. AIM OF THE STUDY The current study aimed to evaluate the efficacy and safety of KG in AD patients and to investigate the molecular mechanisms that underlie the efficacy of KG in the treatment of AD. MATERIALS AND METHODS A single-arm prospective pilot study with historical controls was conducted. This study evaluated 11 patients with mild to moderate AD, who underwent topical KG treatment. The primary outcome was the change in local eczema area and severity index (EASI) scores. The secondary outcomes included the recurrence rate and safety. The recurrence rate were compared to those of a matched historical control group. Secondly, modular pharmacology analysis was used to elucidate the therapeutic mechanism of KG in AD treatment by identifying the hub genes and kernel pathways. Moreover, we evaluated treatment effects and verified modular pharmacology-based findings using the calcipotriol (MC903)-induced mouse model and bioinformatics analysis. RESULTS Our clinical pilot study demonstrated that the KG wet wrapping could effectively ameliorate skin lesions in AD patients with a significant drop from 4.18 to 1.63 in local EASI. Compared to the historical controls, KG had a reduced recurrence rate (36%) and a longer median time to relapse (>12 weeks). Modular pharmacology analysis identified the hub genes including IL6, IL1B, VEGFA, STAT3, JUN, TIMP1 and ARG1, and kernel pathway including IL-17 signaling pathway of KG. Pharmacodynamic results suggested that KG ameliorated skin symptoms and demonstrated no less efficacy than halcinonide (HC) in MC903-induced AD-like mice. In addition, KG regulated the mRNA expression of hub genes as well as the related genes involved in IL-17 signaling pathway including Il25, Il17a,Traf3ip2, and Traf6, in skin lesions of AD-like mice. CONCLUSION These results showed that KG is a safe and effective topical treatment for AD with low recurrence. In addition, our study identified potential molecular pathways and therapeutic candidate targets of the KG formula, providing evidence for its clinical applicability in AD.
Collapse
Affiliation(s)
- Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Mingxia Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Wencheng Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Yun Bai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
8
|
Shrief AI, Hamed WHE, Mazroa SA, Moustafa AM. Histological study of the role of CD34+ stem cells and mast cells in cyclophosphamide-induced thymic injury in rats and the possible attenuating role of melatonin. Histochem Cell Biol 2023:10.1007/s00418-023-02185-6. [PMID: 36884094 DOI: 10.1007/s00418-023-02185-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
Cyclophosphamide (CP) is an anticancer drug that adversely affects immunity and thymus structure. Melatonin is a hormone secreted by the pineal gland. It boosts immunity and has antioxidant properties. Therefore, the present study was conducted to investigate the possible protective effect of melatonin on CP-induced changes in the rat thymus. Forty male albino rats were used and divided equally into four main groups. Group I was the control group. Group II (melatonin group) received melatonin at a dose of 10 mg/kg body weight/day by intraperitoneal injection throughout the experimental period. Group III (CP group) received 200 mg/kg body weight CP by a single intraperitoneal injection. Group IV (CP + melatonin group) received melatonin intraperitoneally at a dose of 10 mg/kg body weight/day starting 5 days prior to CP injection until the end of the experiment. All rats were euthanized 7 days after CP injection. Administration of CP in group III resulted in depletion of the cortical thymoblasts. In addition, CD34-immunopositive stained stem cells decreased and mast cell infiltration increased. Electron microscopy showed degeneration of thymoblasts and vacuolization of epithelial reticular cells. Administration of melatonin with CP in group IV showed considerable protection of thymic histology. In conclusion, melatonin may protect against CP-induced thymic injury.
Collapse
Affiliation(s)
- Amira I Shrief
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Walaa H E Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shireen A Mazroa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amal M Moustafa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|