1
|
Mandal AK, Sahoo A, Almalki WH, Almujri SS, Alhamyani A, Aodah A, Alruwaili NK, Abdul Kadir SZBS, Mandal RK, Almalki RA, Lal JA, Rahman M. Phytoactives for Obesity Management: Integrating Nanomedicine for Its Effective Delivery. Nutr Rev 2024:nuae136. [PMID: 39331591 DOI: 10.1093/nutrit/nuae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Obesity is a global health concern that requires urgent investigation and management. While synthetic anti-obesity medications are available, they come with a high risk of side-effects and variability in their efficacy. Therefore, natural compounds are increasingly being used to treat obesity worldwide. The proposition that naturally occurring compounds, mainly polyphenols, can be effective and safer for obesity management through food and nutrient fortification is strongly supported by extensive experimental research. This review focuses on the pathogenesis of obesity while reviewing the efficacy of an array of phytoactives used for obesity treatment. It details mechanisms such as enzyme inhibition, energy expenditure, appetite suppression, adipocyte differentiation, lipid metabolism, and modulation of gut microbiota. Comprehensive in vitro, in vivo, and preclinical studies underscore the promise of phytoactives in combating obesity, which have been thoroughly reviewed. However, challenges, such as poor bioavailability and metabolism, limit their potential. Advances in nanomedicines may overcome these constraints, offering a new avenue for enhancing the efficacy of phytoactives. Nonetheless, rigorous and targeted clinical trials are essential before applying phytoactives as a primary treatment for obesity.
Collapse
Affiliation(s)
- Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | | | | | - Rami A Almalki
- Clinical Pharmacy Unit, Pharmaceutical Care Department, King Faisal Hospital, Makkah Health Cluster, Makkah 24382, Saudi Arabia
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
2
|
Zugravu DD, Popa SL, Pop AV, Moldovan R, Tăbăran AF, David L, Clichici SV. Hepatic changes following a high-fat diet: effects of Cornus mas and gold nanoparticles phytoreduced with Cornus mas on oxidative stress, inflammation, and histological damage. Med Pharm Rep 2024; 97:318-329. [PMID: 39234459 PMCID: PMC11370864 DOI: 10.15386/mpr-2775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024] Open
Abstract
Background and aims High fat diet (HFD) can lead to liver injury, through oxidative stress and inflammation. The use of natural compounds with antioxidant and anti-inflammatory properties can have a protective potential. We aimed to investigate the effects of Cornus mas (CM) and gold nanoparticles phytoreduced with CM (GNPsCM) on hepatic alterations induced by HFD in rats. Methods Female Sprague Dawley rats were randomly divided into four groups: control, HFD, HFD +CM and HFD + GNPsCM. The high fat diet was administered for 32 weeks and CM and GNPsCM were administered for 4 weeks after the HFD period. The high fat diet induced oxidative stress in liver, with lipid peroxidation and decreased antioxidant capacity, inflammation and minimal histological alterations. Results The administration of CM and GNPsCM reduced lipid peroxidation produced by HFD and increased antioxidant potential in liver homogenates, while increasing inflammatory markers. Histological alterations were slightly improved by the intervention of compounds, and hyaluronic acid content of the liver without statistical significance as compared to HFD group. Conclusion These findings support the potential of these treatments in addressing liver oxidative stress, mitigating liver damage induced by a high-fat diet. This investigation sheds light on the oxidative stress dynamics and histological alterations associated with high-fat diet-induced liver injury, contributing to our understanding of potential therapeutic interventions.
Collapse
Affiliation(s)
- Dalina Diana Zugravu
- Department of Physiology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cuj-Napoca, Romania
| | - Stefan Lucian Popa
- Second Medical Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Vasile Pop
- Second Medical Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cuj-Napoca, Romania
| | - Alexandru Flaviu Tăbăran
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Luminita David
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering. “Babes-Bolyai” University, Cluj-Napoca, Romania
| | - Simona Valeria Clichici
- Department of Physiology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cuj-Napoca, Romania
| |
Collapse
|
3
|
Al-Radadi NS, Al-Bishri WM, Salem NA, ElShebiney SA. Plant-mediated green synthesis of gold nanoparticles using an aqueous extract of Passiflora ligularis, optimization, characterizations, and their neuroprotective effect on propionic acid-induced autism in Wistar rats. Saudi Pharm J 2024; 32:101921. [PMID: 38283153 PMCID: PMC10820356 DOI: 10.1016/j.jsps.2023.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024] Open
Abstract
The current study was conducted to examine an innovative method for synthesizing gold nanoparticles (AuNPs) from an aqueous sweet granadilla (Passiflora ligularis Juss) P. ligularis. Furthermore, the synthesized AuNPs were used to explore their potential neuroprotective impact against propionic acid (PPA)-induced autism. A sweet granadilla extract was used to achieve the synthesis of AuNPs. The structural and dimensional dispersion of AuNPs were confirmed by different techniques, including UV-Vis spectrophotometer (UV-Vis), X-ray Diffraction (XRD) Pattern, Energy Dispersive X-ray (EDX), Zeta potential, and High-Resolution Transmission Electron Microscopy (HRTEM) analysis. The AuNPs mediated by P. ligularis adopt a spherical shape morphology and the particle size was distributed in the range of 8.43-13 nm without aggregation. Moreover, in vivo, the anti-autistic effects of AuNPs administration were higher than those of P. ligularis extract per second. In addition, the reduced anxiety and neurobehavioral deficits of AuNPs were observed in autistic rats which halted the brain oxidative stress, reduced inflammatory cytokines, ameliorated neurotransmitters, and neurochemical release, and suppressed apoptotic genes (p < 0.05). The alleviated antiapoptotic gene expression and histopathological analysis confirmed that the treatment of AuNPs showed significant neural pathways that aid in reducing tissue damage and necrosis. The results emphasize that the biomedical activity was increased by using the green source synthesis P. ligularis -AuNPs. Additionally, the formulation of AuNPs demonstrates strong neuroprotective effects against PPA-induced autism that were arbitrated by a range of different mechanisms, such as anti-inflammatory, antioxidant, neuromodulator, and antiapoptotic effects.
Collapse
Affiliation(s)
- Najlaa S. Al-Radadi
- Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 30002, Al-Madinah Al-Munawarah 14177, Saudi Arabia
| | - Widad M. Al-Bishri
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Neveen A. Salem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Shaimaa A. ElShebiney
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Moldovan R, Mitrea DR, Florea A, David L, Mureşan LE, Chiş IC, Suciu ŞM, Moldovan BE, Lenghel M, Chiriac LB, Ielciu I, Hanganu D, Bab T, Clichici S. Effects of Gold Nanoparticles Functionalized with Cornus mas L. Fruit Extract on the Aorta Wall in Rats with a High-Fat Diet and Experimental-Induced Diabetes Mellitus-An Imaging Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1101. [PMID: 36985995 PMCID: PMC10051497 DOI: 10.3390/nano13061101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Diabetes mellitus and high-fat diets trigger the mechanisms that alter the walls of blood vessels. Gold nanoparticles, as new pharmaceutical drug delivery systems, may be used in the treatment of different diseases. In our study, the aorta was investigated via imaging after the oral administration of gold nanoparticles functionalized with bioactive compounds derived from Cornus mas fruit extract (AuNPsCM) in rats with a high-fat diet and diabetes mellitus. Sprague Dawley female rats that received a high-fat diet (HFD) for 8 months were injected with streptozotocin to develop diabetes mellitus (DM). The rats were randomly allocated into five groups and were treated, for one additional month with HFD, with carboxymethylcellulose (CMC), insulin, pioglitazone, AuNPsCM solution or with Cornus mas L. extract solution. The aorta imaging investigation consisted of echography, magnetic resonance imaging and transmission electron microscopy (TEM). Compared to the rats that received only CMC, the oral administration of AuNPsCM produced significant increases in aorta volume and significant decreases in blood flow velocity, with ultrastructural disorganization of the aorta wall. The oral administration of AuNPsCM altered the aorta wall with effects on the blood flow.
Collapse
Affiliation(s)
- Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Daniela-Rodica Mitrea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Luminiţa David
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Laura Elena Mureşan
- Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Irina Camelia Chiş
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Şoimița Mihaela Suciu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Bianca Elena Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Manuela Lenghel
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Liviu Bogdan Chiriac
- Medical Biophysics, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400394 Cluj-Napoca, Romania
- Faculty of Physics, Babeş-Bolyai University, 1 Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400010 Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hatieganu, 400000 Cluj-Napoca, Romania
| | - Timea Bab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hatieganu, 400000 Cluj-Napoca, Romania
- SC PlantExtrakt SRL, Radaia, 407059 Cluj, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|