1
|
Ma J, Yue S, Liu Y, Gong L, He P, Yang Y, Fu Z, Han D, Hu Q, Liao F, Xu L. Fucoxanthin ameliorates ulcerative colitis by maintaining the epithelial barrier via blocking JAK2/STAT3 signaling pathway. Toxicol Appl Pharmacol 2024; 495:117213. [PMID: 39719254 DOI: 10.1016/j.taap.2024.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The clinical efficacies of Ulcerative colitis (UC) are far from satisfactory. Fucoxanthin (FUC) is a marine carotenoid that is abundant in seaweed and microalgae. It has been reported that FUC can possess anti-inflammatory and antioxidant. However, its mechanism and role in UC is yet to be clarified. This study aimed to investigate the protective effect and potential mechanism of FUC extracted from the diatom Phaeodactylum tricornutm on dextran sodium sulfate (DSS) -induced colitis. METHODS Animal UC model was induced by DSS and cellular model was established by TNF-α. Immunohistochemical staining, Western blot, RT-qPCR, and immunofluorescence were used to assess the inflammatory responses and epithelial barrier in vivo and in vitro models. RESULTS The results showed that FUC attenuates DSS-induced colitis by ameliorating the epithelial mucosal barrier. Moreover, FUC possessed antioxidant and anti-inflammatory effects on NCM460 cells. JAK/STAT activator RO8191 could reverse these changes. CONCLUSION FUC exerted anti-inflammatory and antioxidant effects via the JAK2/STAT3 signaling pathway, and served as a potential therapeutic agent for the treatment of UC.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Simei Yue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yinghui Liu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lingjiao Gong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingjie Yang
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengxin Fu
- Demeter Biotech (Zhuhai) Co. Ltd., Zhuhai, China
| | - Danxiang Han
- Demeter Biotech (Zhuhai) Co. Ltd., Zhuhai, China
| | - Qiang Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, China.
| | - Lin Xu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Sakthivel S, Thangavel P, Saravanakumar I, Muthuvijayan V. Fabrication of Thymol-loaded Isabgol/Konjac Glucomannan-based Microporous Scaffolds with Enriched Antioxidant and Antibacterial Properties for Skin Tissue Engineering Applications. Chem Asian J 2024; 19:e202400839. [PMID: 39340792 DOI: 10.1002/asia.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
An antioxidant, antibacterial, and biocompatible biomaterial is essential to repair skin wounds effectively. Here, we have employed two natural biopolymers, isabgol (ISAB) and konjac glucomannan (KGM), to prepare microporous scaffolds by freezing and lyophilization. The scaffolds are loaded with thymol (THY) to impart potent antioxidant and antibacterial activities. The physicochemical properties of the ISAB+KGM+THY scaffold, like porosity (41.8±2.4 %), swelling, and biodegradation, were optimal for tissue regeneration application. Compared to the control, ISAB+KGM+THY scaffolds promote attachment, migration, and proliferation of L929 fibroblasts. The antioxidant activity of the ISAB+KGM+THY scaffold was significantly improved after loading THY. This would protect the tissues from oxidative damage. The antibacterial activity of the ISAB+KGM+THY scaffold was significantly higher than that of the control, which would help prevent bacterial infection. The vascularization ability of the ISAB+KGM scaffold was not altered by incorporating THY in the ISAB+KGM scaffold. Therefore, a strong antioxidant, antibacterial, and biocompatible nature of the ISAB+KGM+THY scaffold could be useful for various biomedical applications.
Collapse
Affiliation(s)
- Shruthi Sakthivel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ponrasu Thangavel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Iniyan Saravanakumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
3
|
Yan H, Yan S, Li Z, Zhang T, He J, Yu B, Yu J, Luo J, Wu A, Pu J, Wang Q, Wang H, Liu X, Chen D. Mulberry leaf benefits the intestinal epithelial barrier via direct anti-oxidation and indirect modulation of microbiota in pigs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156217. [PMID: 39571413 DOI: 10.1016/j.phymed.2024.156217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Diarrhea and intestinal dysfunction commonly occur in young mammals, causing malnutrition and growth retardation in both human and livestock. As the traditional Chinese herb, mulberry leaf contains various bioactive compounds and showed several health benefits, such as regulating glucose and lipid metabolism, and modulating gut microbiota. Mulberry leaf exhibits the potential to modulate redox homeostasis and improve gut health, but the function and underlying mechanisms remains elucidative. PURPOSE To investigate the benefit of mulberry leaf on intestinal barrier in weanling pigs, illustrate the possible involvement of Keap1-Nrf2 mediated anti-oxidation and gut microbiota. METHODS Chemical compositions of mulberry leaf powder (MLP) and mulberry leaf extract (MLE) were determined. The effects of MLP on growth performance, intestinal barrier integrity, anti-oxidative capacity, immune function and gut microbiota were evaluated in weaned pigs. The regulation of redox homeostasis by MLE and the involvement of Keap1-Nrf2 signaling were further determined in H2O2 induced oxidative stress (OS) model in IPEC-J2 cells via determining reactive oxygen species (ROS) production by flow cytometry and related protein abundance by western blot analysis. RESULTS In weanling pigs, MLP reduced diarrhea incidence, and increased villus height, intestinal integrity and expression of tight junctions in intestinal mucosa. The improvement of intestinal barrier by MLP was associated with the enhancement in anti-oxidative capacity and the changes in gut microbiota and related short chain fatty acids production. Our study further revealed the direct regulation of MLE on tight junction expressions and ROS production to alleviate H2O2 induced OS in IPEC-J2 cells via the activating Keap1-Nrf2 signaling pathway. CONCLUSIONS Mulberry leaf in diet improved epithelial barrier via the direct anti-oxidation through the activation of Keap1-Nrf2 signaling pathway and the indirect modulation of gut microbiota in weaned pigs.
Collapse
Affiliation(s)
- Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Shurui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zaiyao Li
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Tingting Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Quyuan Wang
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Huifen Wang
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xingyu Liu
- Sichuan Shanghao Tea Co., Ltd., Nanchong, Sichuan 637000, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
4
|
Cherrada N, Chemsa A, Gheraissa N, Laib I, Gueboudji Z, EL‐Shazly M, Zaater A, Abid A, Sweilam S, Emran T, Nani S, Benamor B, Ghemam Amara D, Atoki A, Messaoudi M. Gastroprotective Efficacy of North African Medicinal Plants: A Review on Their Therapeutic Potential for Peptic Ulcers. Food Sci Nutr 2024; 12:8793-8824. [PMID: 39619964 PMCID: PMC11606823 DOI: 10.1002/fsn3.4536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 01/12/2025] Open
Abstract
Peptic ulcer disease remains a prevalent gastrointestinal disorder worldwide. Current treatments often have limitations, sparking interest in alternative therapies from medicinal plants. This review examines the gastroprotective potential of 54 North African medicinal plants against peptic ulcers. An extensive literature search was conducted, focusing on plants with preclinical and clinical evidence of anti-ulcer efficacy and documented use in North African traditional medicine. The review identified several promising plant species, such as licorice (Glycyrrhiza glabra), chamomile (Matricaria chamomilla), olive (Olea europaea), pomegranate (Punica granatum), Aloe vera, and black seed (Nigella sativa), along with their bioactive constituents, including flavonoids, tannins, and terpenoids. These compounds exhibit gastroprotective properties through multiple mechanisms, such as enhancing the gastric mucosal barrier, inhibiting acid secretion, displaying antioxidant and anti-inflammatory effects, promoting ulcer healing, and combating Helicobacter pylori infection. The evidence presented includes in vitro assays, animal models, and some clinical studies. While many of the 53 plants reviewed demonstrated significant anti-ulcer effects compared to standard drugs, further clinical research is needed to establish efficacy and safety in humans. The synergistic actions of phytochemical mixtures in medicinal plant extracts likely contribute to their therapeutic potential. This review highlights the role these North African medicinal plants may play in the prevention and treatment of peptic ulcers and identifies promising candidates for further research and development of evidence-based botanical therapies.
Collapse
Affiliation(s)
- Nezar Cherrada
- Faculty of Life and Natural Sciences, Department of BiologyUniversity of El OuedEl‐OuedAlgeria
- Laboratory of Biodiversity and Application of Biotechnology in AgricultureUniversity of El OuedEl‐OuedAlgeria
| | - Ahmed Elkhalifa Chemsa
- Faculty of Life and Natural Sciences, Department of BiologyUniversity of El OuedEl‐OuedAlgeria
- Laboratory of Biodiversity and Application of Biotechnology in AgricultureUniversity of El OuedEl‐OuedAlgeria
| | - Noura Gheraissa
- Faculty of Life and Natural Sciences, Department of BiologyUniversity of El OuedEl‐OuedAlgeria
- Laboratory of Biodiversity and Application of Biotechnology in AgricultureUniversity of El OuedEl‐OuedAlgeria
| | - Ibtissam Laib
- Faculty of Life and Natural Sciences, Department of Molecular and Cellular BiologyUniversity of El OuedEl‐OuedAlgeria
| | - Zakia Gueboudji
- Faculty of Nature and Life SciencesAbbes Laghrour University of KhenchelaKhenchelaAlgeria
- Biotechnology, Water, Environment and Health LaboratoryAbbes Laghrour University of KhenchelaKhenchelaAlgeria
| | - Mohamed EL‐Shazly
- Faculty of Pharmacy, Department of PharmacognosyAin Shams UniversityCairoEgypt
| | - Abdelmalek Zaater
- Laboratory of Biodiversity and Application of Biotechnology in AgricultureUniversity of El OuedEl‐OuedAlgeria
- Faculty of Life and Natural Sciences, Department of AgronomyUniversity of El OuedEl‐OuedAlgeria
| | - Asma Abid
- Faculty of Mathematics and Matter SciencesUniversity of OuarglaOuarglaAlgeria
- Laboratory of Valorization and Promotion of Saharan Resources (VPRS)OuarglaAlgeria
| | - Sherouk Hussein Sweilam
- College of Pharmacy, Department of PharmacognosyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
- Faculty of Pharmacy, Department of PharmacognosyCairo‐Suez RoadEgyptian Russian UniversityBadr City, CairoEgypt
| | - Talha Bin Emran
- Warren Alpert Medical School, Department of Pathology and Laboratory MedicineBrown UniversityProvidenceRhode IslandUSA
- Legorreta Cancer CenterBrown UniversityProvidenceRhode IslandUSA
- Faculty of Allied Health Sciences, Department of PharmacyDaffodil International UniversityDhakaBangladesh
| | - Sadok Nani
- Faculty of Life and Natural Sciences, Department of Molecular and Cellular BiologyUniversity of El OuedEl‐OuedAlgeria
| | - Bilal Benamor
- Higher School of Saharan Agriculture‐El OuedEl OuedAlgeria
- Laboratory of Genetic, Biotechnology and Valorization of Bio‐Resources (LGBVB)University of Mohamed KhiderBiskraAlgeria
| | - Djilani Ghemam Amara
- Faculty of Life and Natural Sciences, Department of BiologyUniversity of El OuedEl‐OuedAlgeria
- Laboratory Biology, Environment, and HealthUniversity of El OuedEl‐OuedAlgeria
| | | | | |
Collapse
|
5
|
Safarbalou A, Abbasi A. Oral administration of liposome-encapsulated thymol could alleviate the inflammatory parameters in serum and hippocampus in a rat model of Alzheimer's disease. Exp Gerontol 2024; 193:112473. [PMID: 38801839 DOI: 10.1016/j.exger.2024.112473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Neuroinflammation is closely related to Alzheimer's Disease (AD) pathology, hence supplements with anti-inflammatory property could help attenuate the progression of AD. This study was conducted to evaluate the potential anti-inflammatory effects of liposome encapsulated thymol (LET), administered orally, in prevention of Alzheimer in a rat model by anti-inflammatory mechanisms. METHODS The rats were grouped into six groups (n = 10 animals per group), including Control healthy (Con), Alzheimer's disease (AD) model, AD model treated with free thymol in 40 and 80 mg/kg body weight (TH40 and TH80), AD model treated with LET in 40 and 80 mg/kg of body weight (LET40 and LET80). The behavioral response of step through latency (Passive Avoidance Test), concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) and brain-derived neurotrophic factor (BDNF) were assessed in serum and hippocampus. RESULTS The results showed that significant increase in concentrations of IL-1β (P = 0.001), IL-6 (P = 0.001), TNF-α (P = 0.001) and COX-2 (P = 0.001) in AD group compared with healthy control rats. AD induction significantly reduced step through latency and revealed deficits in passive avoidance performance. The results also showed the treatment with free thymol especially in higher concentrations and also LTE could decrease serum concentrations of IL-1β (P < 0.05), IL-6 (P < 0.05), TNF-α (P < 0.05), and COX-2 (P < 0.05) and increase BDNF (P < 0.05) compared with control Alzheimer rats in hippocampus and serum. There were also significant correlations between serum and hippocampus concentrations of IL-1β (r2 = 0.369, P = 0.001), IL-6 (r2 = 0.386, P = 0.001), TNF-α (r2 = 0.412, P = 0.001), and COX-2 (r2 = 0.357, P = 0.001). It means a closed and positive relation between serum and hippocampus concentrations of IL-1β, IL-6, TNF-α, and COX-2. CONCLUSIONS LET demonstrates its ability to attenuate neuroinflammatory reaction in AD model through suppression of IL-1β, IL-6, and TNF-α and COX-2 indicators. Hence, it can ameliorate AD pathogenesis by declining inflammatory reaction.
Collapse
Affiliation(s)
- Asal Safarbalou
- Department of Biomedical Research, Institute for Intelligent Research, Tbilisi, Georgia
| | - Adeel Abbasi
- Department of Biomedical Research, Institute for Intelligent Research, Tbilisi, Georgia.
| |
Collapse
|
6
|
Islam MT, Bappi MH, Bhuia MS, Ansari SA, Ansari IA, Shill MC, Albayouk T, Saleh N, El-Shazly M, El-Nashar HAS. Anti-inflammatory effects of thymol: an emphasis on the molecular interactions through in vivo approach and molecular dynamic simulations. Front Chem 2024; 12:1376783. [PMID: 38983677 PMCID: PMC11231963 DOI: 10.3389/fchem.2024.1376783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 07/11/2024] Open
Abstract
Thymol (THY), as the natural monoterpene phenol, acts against oxidative stress and inflammatory processes. This study aimed to evaluate the anti-inflammatory effects and possible molecular mechanisms of THY via formalin-induced mouse and egg albumin-induced chick models alongside molecular docking and molecular dynamic (MD) simulations. THY (7.5, 15, and 30 mg/kg) was investigated, compared to celecoxib and ketoprofen (42 mg/kg), as anti-inflammatory standards. THY dose-dependently and significantly (p < 0.05) decreased paw-licking and edema diameter parameters in formalin (phases I and II) and egg albumin-induced models. Moreover, THY (15 mg/kg) exerted better anti-inflammatory effects in combination with the standard drug ketoprofen than alone and with celecoxib. In silico studies demonstrated elevated binding affinities of THY with cyclooxygenase-2 (COX-2) than the COX-1 enzyme, and the ligand binds at a similar location where ketoprofen and celecoxib interact. The results of MD simulations confirmed the stability of the test ligand. THY exerted anti-inflammatory effects on Swiss mice and young chicks, possibly by interacting with COX-2. As a conclusion, THY might be a hopeful drug candidate for the management of inflammatory disorders.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Manik Chanda Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Tala Albayouk
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Reale M, Costantini E, Aielli L, Rienzo AD, Biase GD, Stefano AD, Cacciatore I. Exploring the therapeutic potential of cinnamoyl derivatives in attenuating inflammation in lipopolysaccharide-induced Caco-2 cells. Future Med Chem 2024; 16:1395-1411. [PMID: 39190472 DOI: 10.1080/17568919.2024.2351293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 08/28/2024] Open
Abstract
Aim: In gastrointestinal (GI) diseases, lipopolysaccharide (LPS) exacerbates gut-barrier dysfunction and inflammation. Cinnamoyl derivatives show potential in mitigating LPS-induced inflammation.Materials & methods: We assessed intestinal epithelial barrier function using Trans-epithelial electrical resistance values and measured inflammatory mediators through real-time PCR and ELISA in Caco-2 cells.Results: LPS treatment increased IL-6, IL-1β, TNF-α, PGE2 and TRL4 expression in Caco-2 cells. Pre-treatment with DM1 (1 or 10 μM) effectively countered LPS-induced TLR4 overexpression and reduced IL-6, IL-1β, TNF-α and PGE2 levels.Conclusion: DM1 holds promise in regulating inflammation and maintaining intestinal integrity by suppressing TLR4 and inflammatory mediators in Caco-2 cells. These findings suggest a potential therapeutic avenue for GI diseases.
Collapse
Affiliation(s)
- Marcella Reale
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Erica Costantini
- Department of Medicine & Aging Sciences, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Annalisa Di Rienzo
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Giuseppe Di Biase
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| |
Collapse
|
8
|
Peng X, Zhang X, Sharma G, Dai C. Thymol as a Potential Neuroprotective Agent: Mechanisms, Efficacy, and Future Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6803-6814. [PMID: 38507708 DOI: 10.1021/acs.jafc.3c06461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Neurodegenerative diseases pose a growing global health challenge, with limited effective therapeutic options. Mitochondrial dysfunction, oxidative stress, neuroinflammation, apoptosis, and autophagy are common underlying mechanisms in these diseases. Thymol is a phenolic monoterpene compound that has gained attention for its diverse biological properties, including antioxidant, anti-inflammatory, and immunomodulatory activities. Thymol supplementation could provide potential neuroprotection and improve cognitive deficits, depressant-like effects, learning, and memory impairments in rodents. Mechanistic investigations reveal that the neuroprotective effects of thymol involve the improvement of oxidative stress, mitochondrial dysfunction, and inflammatory response. Several signaling pathways, including mitochondrial apoptotic, NF-κB, AKT, Nrf2, and CREB/BDNF pathways are also involved. In this review, the neuroprotective effects of thymol, the potential molecular mechanisms, safety, applications, and current challenges toward development as a neuroprotective agent were summarized and discussed. We hope that this review provides valuable insights for the further development of this promising natural product as a promising neuroprotective agent.
Collapse
Affiliation(s)
- Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264000, P. R. China
| | - Xiaowen Zhang
- College of Life Sciences, Yantai University, Yantai 264000, P. R. China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
9
|
Folle C, Marqués AM, Díaz-Garrido N, Carvajal-Vidal P, Sánchez López E, Suñer-Carbó J, Halbaut L, Mallandrich M, Espina M, Badia J, Baldoma L, García ML, Calpena AC. Gel-Dispersed Nanostructured Lipid Carriers Loading Thymol Designed for Dermal Pathologies. Int J Nanomedicine 2024; 19:1225-1248. [PMID: 38348173 PMCID: PMC10859765 DOI: 10.2147/ijn.s433686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose Acne vulgaris is one of the most prevalent dermal disorders affecting skin health and appearance. To date, there is no effective cure for this pathology, and the majority of marketed formulations eliminate both healthy and pathological microbiota. Therefore, hereby we propose the encapsulation of an antimicrobial natural compound (thymol) loaded into lipid nanostructured systems to be topically used against acne. Methods To address this issue, nanostructured lipid carriers (NLC) capable of encapsulating thymol, a natural compound used for the treatment of acne vulgaris, were developed either using ultrasonication probe or high-pressure homogenization and optimized using 22-star factorial design by analyzing the effect of NLC composition on their physicochemical parameters. These NLC were optimized using a design of experiments approach and were characterized using different physicochemical techniques. Moreover, short-term stability and cell viability using HaCat cells were assessed. Antimicrobial efficacy of the developed NLC was assessed in vitro and ex vivo. Results NLC encapsulating thymol were developed and optimized and demonstrated a prolonged thymol release. The formulation was dispersed in gels and a screening of several gels was carried out by studying their rheological properties and their skin retention abilities. From them, carbomer demonstrated the capacity to be highly retained in skin tissues, specifically in the epidermis and dermis layers. Moreover, antimicrobial assays against healthy and pathological skin pathogens demonstrated the therapeutic efficacy of thymol-loaded NLC gelling systems since NLC are more efficient in slowly reducing C. acnes viability, but they possess lower antimicrobial activity against S. epidermidis, compared to free thymol. Conclusion Thymol was successfully loaded into NLC and dispersed in gelling systems, demonstrating that it is a suitable candidate for topical administration against acne vulgaris by eradicating pathogenic bacteria while preserving the healthy skin microbiome.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Paulina Carvajal-Vidal
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Li T, Shi J, Wang L, Qin X, Zhou R, Dong M, Ren F, Li X, Zhang Z, Chen Y, Liu Y, Piao Y, Shi Y, Xu S, Chen J, Li J. Thymol targeting interleukin 4 induced 1 expression reshapes the immune microenvironment to sensitize the immunotherapy in lung adenocarcinoma. MedComm (Beijing) 2023; 4:e355. [PMID: 37655051 PMCID: PMC10466095 DOI: 10.1002/mco2.355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
Immune checkpoint blockades are the most promising therapy in lung adenocarcinoma (LUAD). However, the response rate remains limited, underscoring the urgent need for effective sensitizers. Interleukin 4 induced 1 (IL4I1) is reported to have immunoinhibitory and tumor-promoting effects in several cancers. However, the targetable value of IL4I1 in sensitizing the immunotherapy is not clear, and there is a lack of effective small molecules that specifically target IL4I1. Here, we show that silencing IL4I1 significantly remodels the immune microenvironment via inhibiting aryl hydrocarbon receptor (AHR) signaling, thereby enhancing the efficacy of anti-PD-1 antibody in LUAD, which suggests that IL4I1 is a potential drug target for the combination immunotherapy. We then identify thymol as the first small molecule targeting IL4I1 transcription through a drug screening. Thymol inhibits the IL4I1 expression and blocks AHR signaling in LUAD cells. Thymol treatment restores the antitumor immune response and suppresses the progression of LUAD in an orthotopic mouse model. Strikingly, the combination treatment of thymol with anti-PD-1 antibody shows significant tumor regression in LUAD mice. Thus, we demonstrate that thymol is an effective small molecule to sensitize the PD-1 blockade in LUAD via targeting IL4I1, which provides a novel strategy for the immunotherapy of LUAD.
Collapse
Affiliation(s)
- Tong Li
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Jie Shi
- School of MedicineNankai UniversityTianjinChina
| | | | - Xuan Qin
- Department of Thyroid and Neck TumorTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Rui Zhou
- School of MedicineNankai UniversityTianjinChina
| | - Ming Dong
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Fan Ren
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Xin Li
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Zihe Zhang
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Yanan Chen
- School of MedicineNankai UniversityTianjinChina
| | - Yanhua Liu
- School of MedicineNankai UniversityTianjinChina
| | | | - Yi Shi
- School of MedicineNankai UniversityTianjinChina
| | - Song Xu
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Jun Chen
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Jia Li
- School of MedicineNankai UniversityTianjinChina
| |
Collapse
|
11
|
Lanzarin GAB, Félix LM, Monteiro SM, Ferreira JM, Oliveira PA, Venâncio C. Anti-Inflammatory, Anti-Oxidative and Anti-Apoptotic Effects of Thymol and 24-Epibrassinolide in Zebrafish Larvae. Antioxidants (Basel) 2023; 12:1297. [PMID: 37372027 DOI: 10.3390/antiox12061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Thymol (THY) and 24-epibrassinolide (24-EPI) are two examples of plant-based products with promising therapeutic effects. In this study, we investigated the anti-inflammatory, antioxidant and anti-apoptotic effects of the THY and 24-EPI. We used zebrafish (Danio rerio) larvae transgenic line (Tg(mpxGFP)i114) to evaluate the recruitment of neutrophils as an inflammatory marker to the site of injury after tail fin amputation. In another experiment, wild-type AB larvae were exposed to a well known pro-inflammatory substance, copper (CuSO4), and then exposed for 4 h to THY, 24-EPI or diclofenac (DIC), a known anti-inflammatory drug. In this model, the antioxidant (levels of reactive oxygen species-ROS) and anti-apoptotic (cell death) effects were evaluated in vivo, as well as biochemical parameters such as the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), the biotransformation activity of glutathione-S-transferase, the levels of glutathione reduced and oxidated, lipid peroxidation, acetylcholinesterase activity, lactate dehydrogenase activity, and levels of nitric acid (NO). Both compounds decreased the recruitment of neutrophils in Tg(mpxGFP)i114, as well as showed in vivo antioxidant effects by reducing ROS production and anti-apoptotic effects in addition to a decrease in NO compared to CuSO4. The observed data substantiate the potential of the natural compounds THY and 24-EPI as anti-inflammatory and antioxidant agents in this species. These results support the need for further research to understand the molecular pathways involved, particularly their effect on NO.
Collapse
Affiliation(s)
- Germano A B Lanzarin
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jorge M Ferreira
- Instituto de Investigação e Inovação em Saúde (i3s), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), University of Porto (UP), 4200-135 Porto, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
12
|
Zhuge X, Jin X, Ji T, Li R, Xue L, Yu W, Quan Z, Tong H, Xu F. Geniposide ameliorates dextran sulfate sodium-induced ulcerative colitis via KEAP1-Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116626. [PMID: 37187359 DOI: 10.1016/j.jep.2023.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried fruit of Gardenia jasminoides Ellis (Zhizi in Chinese) is a traditional medicine used for thousands of years in China, Japan and Korea. Zhizi was recorded in Shennong Herbal, as a folk medicine, it reduces fever and treats gastrointestinal disturbance with antiphlogistic effects. Geniposide, an iridoid glycoside, is an important bioactive compound derived from Zhizi and possesses remarkable antioxidant and anti-inflammatory capacities. The pharmacological efficacy of Zhizi is highly related to the antioxidant and anti-inflammatory effects of geniposide. AIM OF THE STUDY Ulcerative colitis (UC) is a common chronic gastrointestinal disease as a global public health threat. Redox imbalance is an essential factor in the progression and recurrence of UC. This study aimed to explore the therapeutic effect of geniposide on colitis and uncover the underlying mechanisms of geniposide-mediated antioxidant and anti-inflammatory activities. EXPERIMENTAL DESIGN The study design involved investigating the novel mechanism by which geniposide ameliorates dextran sulfate sodium (DSS)-induced colitis in vivo and lipopolysaccharide (LPS)-challenged colonic epithelial cells in vitro. MATERIALS AND METHODS The protective effect of geniposide against colitis was evaluated by histopathologic observation and biochemical analysis of colonic tissues in DSS-induced colitis mice. The antioxidant and anti-inflammatory effects of geniposide were evaluated in both DSS-induced colitis mice and LPS-challenged colonic epithelial cells. Immunoprecipitation, drug affinity responsive target stability (DARTS), and molecular docking were performed to identify the potential therapeutic target of geniposide and the potential binding sites and patterns. RESULTS Geniposide ameliorated the symptoms of DSS-induced colitis and colonic barrier injury, inhibited pro-inflammatory cytokine expression, and suppressed activation of the NF-κB signaling in colonic tissues of DSS-challenged mice. Geniposide also ameliorated lipid peroxidation and restored redox homeostasis in DSS-treated colonic tissues. In addition, in vitro experiments also showed that geniposide exhibited significant anti-inflammatory and antioxidant activity, as evidenced by suppressed IκB-α and p65 phosphorylation and IκB-α degradation, and enhanced the phosphorylation and transcriptional activity of Nrf2 in LPS-treated Caco2 cells. ML385, a specific Nrf2 inhibitor, abolished the protective effect of geniposide against LPS-induced inflammation. Mechanistically, geniposide could bind to KEAP1, thereby disrupting the interaction between KEAP1 and Nrf2, preventing Nrf2 from degradation and activating the Nrf2/ARE signaling pathway, ultimately suppressing the onset of inflammation caused by redox imbalance. CONCLUSIONS Geniposide ameliorates colitis by activation of Nrf2/ARE signaling, while preventing colonic redox imbalance and inflammatory damage, indicating that geniposide can be considered as a promising lead compound for the treatment of colitis.
Collapse
Affiliation(s)
- Xiaoju Zhuge
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China.
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China.
| | - Tingting Ji
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China.
| | - Rongzhou Li
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China.
| | - Liwei Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China.
| | - Weilai Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China.
| | - Zijiao Quan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, PR China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, PR China.
| | - Fang Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China.
| |
Collapse
|
13
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
14
|
Xiong Y, Chen J, Lv M, Wang F, Zhang H, Tang B, Li Y. Thymol improves autism-like behaviour in VPA-induced ASD rats through the Pin1/p38 MAPK pathway. Int Immunopharmacol 2023; 117:109885. [PMID: 36842231 DOI: 10.1016/j.intimp.2023.109885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/28/2023]
Abstract
Inflammation plays an essential role in the pathogenesis of autism spectrum disorder (ASD). Thymol is a bioactive monoterpene isolated from Thymus vulgaris that has anti-inflammatory properties and is helpful in neurodevelopmental disorders. The purpose of this study was to investigate the effects of thymol on autism-like behaviours in rats with VPA-induced ASD and to assess the related molecular mechanisms. In the prefrontal cortex (PFC) of the valproic acid (VPA)-exposed rat model, the levels of Pin1, phosphorylated p38 MAPK, interleukin-1β (IL-1β) and tumour necrosis factor (TNF)-α, were increased, and the levels of PSD95 and synaptophysin (SYP) decreased. After thymol treatment (30 mg/kg), the VPA-induced autism-like behaviours were alleviated. Moreover, thymol also rescued the dysregulated levels of Pin1, phosphorylated p38 MAPK, IL-1β, TNF-α, PSD95, and SYP. In addition, immunofluorescence experiments showed that thymol treatment decreased the correlation between Pin1 and phosphorylated p38 MAPK. Mechanistically, Pin1 knockdown by RNA interference confirmed that Pin1 promotes inflammation via phosphorylation of p38 MAPK in the VPA exposure rat model. In conclusion, thymol improved autism-like behaviours in VPA-induced ASD rats by reducing inflammation and improving neurodevelopment. This effect was mediated by the Pin1/p38 MAPK pathway. These results experimentally provide the potential for thymol in new therapeutic avenues for autism.
Collapse
Affiliation(s)
- Yue Xiong
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Jianhui Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Mingqi Lv
- Experimental Teaching Management Center of Chongqing Medical University, Chongqing 400016, China
| | - Feifei Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Hanhong Zhang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Boyi Tang
- The Second Clinical College of Chongqing Medical University, Chongqing 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Evaluation of the synergistic antifungal effects of thymol and cinnamaldehyde combination and its mechanism of action against Rhizopus stolonifer in vitro and in vivo. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|