1
|
He M, Lim XY, Li J, Li L, Zhang T. Mechanisms of acupuncture at Zusanli (ST36) and its combinational acupoints for stress gastric ulcer based on the correlation between Zang-fu and acupoints. JOURNAL OF INTEGRATIVE MEDICINE 2024:S2095-4964(24)00414-X. [PMID: 39736482 DOI: 10.1016/j.joim.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 08/12/2024] [Indexed: 01/01/2025]
Abstract
Gastric ulcer (GU) is a common digestive system disease. Acupuncture, as one of the external treatments of traditional Chinese medicine (TCM), has the characteristics of multi-target, multi-pathway and multi-level action in the treatment of GU. The relationship between meridian points and Zang-fu is an important part of the theory of TCM, which is crucial for the diagnosis and treatment of diseases. There is an external and internal link between acupoints and Zang-fu. The pathological reaction of Zang-fu can manifest as acupoint sensitization, while stimulation of acupoints can play a therapeutic role in the internal Zang-fu. Therefore, the acupoint has the functions of reflecting and treating diseases. This review explores the tender points on the body surface of patients with GU and the rules of acupoint selection. In addition, Zusanli (ST36), as one of the most used acupoints of the stomach meridian, was selected to show the mechanisms behind acupoint stimulation in the treatment of GU in greater detail, specifically in the well-studied model of the stress-induced GU (SGU). Hence, the mechanisms of acupuncture at ST36 and points commonly used in combination with ST36 to treat SGU are discussed further. Treatment effects can be achieved through anti-inflammatory and antioxidant activities, gastric mucosal injury repair, and interaction with the brain-gut axis. In summary, this review provides evidence for a comprehensive understanding of the phenomena and mechanism of acupoint functions for GU. Please cite this article as: He M, Lim XY, Li J, Li L, Zhang T. Mechanisms of acupuncture at Zusanli (ST36) and its combinational acupoints for stress gastric ulcer based on the correlation between Zang-fu and acupoints. J Integr Med. 2024; Epub ahead of print.
Collapse
Affiliation(s)
- Mu He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xue Yee Lim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Wang XY, Hao M, Li YP, Zhang J, Xu QS, Yang F, Yang ZC, Xiong YR, Gong ES, Luo JH, Zou Q. Structural characteristics of a purified Evodiae fructus polysaccharide and its gastroprotection and relevant mechanism against alcohol-induced gastric lesions in rats. Int J Biol Macromol 2024; 281:136410. [PMID: 39395514 DOI: 10.1016/j.ijbiomac.2024.136410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Evodiae fructus polysaccharide (EFP) has been previously shown to protect against alcohol-induced gastric lesions. However, which and how active fractions in EFP exert gastroprotection remains unclear. This study aimed to characterize the structure of the purified fraction (EFP-2-1) of EFP, and investigate its gastroprotection and underlying mechanisms. EFP-2-1 was obtained through column chromatography, and was characterized using instrumental analytical techniques. Gastroprotective effect of EFP-2-1 was evaluated using alcohol-induced gastric lesions in rats, and its mechanism was explored through proteomics, metabolomics and diversity sequencing. Results showed that EFP-2-1 had a molecular weight of 7.3 kDa, and consisted mainly of rhamnose, galacturonic acid, galactose and arabinose. Its backbone contained HG and RG-I domains, and branched with →5)-α-l-Araf-(1→, α-l-Araf-(1→ and →4)-β-d-Galp-(1→ residues. EFP-2-1 reduced gastric lesions and the levels of MDA, TNF-α and IL-6, activated PPARγ, primarily altered protein digestion and absorption and bile secretion metabolic pathways, regulated gut microbiota like Faecalibaculum and Lachnoclostridium, and increased short-chain fatty acids production. Correlations were observed among the gut microbiota, metabolites and biochemical indexes influenced by EFP-2-1. These findings suggest that EFP-2-1 is an active fraction of EFP for protecting against alcohol-induced gastric lesions, which may be linked to PPARγ activation, gut microbiota and serum metabolism.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Ming Hao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Yan-Ping Li
- Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| | - Jun Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Quan-Sheng Xu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Fan Yang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Zi-Chao Yang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Yu-Rou Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
3
|
Sun Y, Sun H, Zhang Z, Tan F, Qu Y, Lei X, Xu Q, Wang J, Shu L, Xiao H, Yang Z, Liu H. New insight into oxidative stress and inflammatory responses to kidney stones: Potential therapeutic strategies with natural active ingredients. Biomed Pharmacother 2024; 179:117333. [PMID: 39243436 DOI: 10.1016/j.biopha.2024.117333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Kidney stones, a prevalent urological disorder, are closely associated with oxidative stress (OS) and the inflammatory response. Recent research in the field of kidney stone treatment has indicated the potential of natural active ingredients to modulate OS targets and the inflammatory response in kidney stones. Oxidative stress can occur through various pathways, increasing the risk of stone formation, while the inflammatory response generated during kidney stone formation further exacerbates OS, forming a detrimental cycle. Both antioxidant systems related to OS and inflammatory mediators associated with inflammation play roles in the pathogenesis of kidney stones. Natural active ingredients, abundant in resources and possessing antioxidative and anti-inflammatory properties, have the ability to decrease the risk of stone formation and improve prognosis by reducing OS and suppressing pro-inflammatory cytokine expression or pathways. Currently, numerous developed natural active ingredients have been clinically applied and demonstrated satisfactory therapeutic efficacy. This review aims to provide novel insights into OS and inflammation targets in kidney stones as well as summarize research progress on potential therapeutic strategies involving natural active ingredients. Future studies should delve deeper into exploring efficacy and mechanisms of action of diverse natural active ingredients, proposing innovative treatment strategies for kidney stones, and continuously uncovering their potential applications.
Collapse
Affiliation(s)
- Yue Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Hongmei Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Zhengze Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Futing Tan
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Yunxia Qu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Xiaojing Lei
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Qingzhu Xu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Jiangtao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Lindan Shu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China.
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China.
| |
Collapse
|
4
|
La X, He X, Liang J, Zhang Z, Li H, Liu Y, Liu T, Li Z, Wu C. Gastroprotective Effect of Isoferulic Acid Derived from Foxtail Millet Bran against Ethanol-Induced Gastric Mucosal Injury by Enhancing GALNT2 Enzyme Activity. Nutrients 2024; 16:2148. [PMID: 38999895 PMCID: PMC11243359 DOI: 10.3390/nu16132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Excessive alcohol consumption has led to the prevalence of gastrointestinal ailments. Alleviating gastric disorders attributed to alcohol-induced thinning of the mucus layer has centered on enhancing mucin secretion as a pivotal approach. In this study, foxtail millet bran polyphenol BPIS was divided into two components with MW < 200 D and MW > 200 D by molecular interception technology. Combined with MTT, cell morphology observation, and trypan blue staining, isoferulic acid (IFA) within the MW < 200 D fraction was determined as the effective constituent to mitigate ethanol-induced damage of gastric epithelial cells. Furthermore, a Wistar rat model with similar clinical features to alcohol-induced gastric mucosal injury was established. Then, gastric morphological observation, H&E staining, and assessments of changes in gastric hexosamine content and gastric wall binding mucus levels were carried out, and the results revealed that IFA (10 mg/Kg) significantly ameliorated alcohol-induced gastric mucosal damage. Finally, we applied techniques including Co-IP, molecular docking, and fluorescence spectroscopy and found that IFA inhibited the alcohol-induced downregulation of N-acetylgalactosamintransferase 2 (GALNT2) activity related to mucus synthesis through direct interaction with GALNT2 in gastric epithelial cells, thus promoting mucin synthesis. Our study lays a foundation for whole grain dietary intervention tailored to individuals suffering from alcoholic gastric mucosal injury.
Collapse
Affiliation(s)
- Xiaoqin La
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (Z.Z.); (T.L.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Xiaoting He
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.H.); (H.L.); (Y.L.)
| | - Jingyi Liang
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China;
| | - Zhaoyan Zhang
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (Z.Z.); (T.L.)
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.H.); (H.L.); (Y.L.)
| | - Yizhi Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.H.); (H.L.); (Y.L.)
| | - Ting Liu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (Z.Z.); (T.L.)
| | - Zhuoyu Li
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China;
- The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (Z.Z.); (T.L.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan 030006, China
| |
Collapse
|
5
|
Tan G, Duan Z, Xia G, Xin T, Yang L, Liu F, Xie H. Ultrasonic-Assisted Extraction and Gastrointestinal Digestion Characteristics of Polysaccharides Extracted from Mallotus oblongfolius. Foods 2024; 13:1799. [PMID: 38928741 PMCID: PMC11202859 DOI: 10.3390/foods13121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The polysaccharides were extracted from the leaves of Mallotus oblongifolius (MO) using an ultrasonic-assisted extraction method in this study. The main variables affecting the yield of polysaccharides extracted from Mallotus appallatus (MOPS) were identified and optimized while concurrently investigating its antioxidant capacity, hypoglycemic activity, and digestive properties. The results indicated that the optimal ultrasound-assisted extraction of MOPS involved an ultrasound power of 200 W, a liquid-to-solid ratio of 25:1 (mL:g), an extraction temperature of 75 °C, and an ultrasound time of 45 min, leading to an extraction yield of (7.36 ± 0.45)% (m/m). The MOPS extract exhibited significant scavenging activity against DPPH and ABTS radicals with IC50 values of (25.65 ± 0.53) μg/mL and (100.38 ± 0.38) μg/mL, respectively. Furthermore, it effectively inhibited the enzymatic activities of α-glucosidase and α-amylase with IC50 values of (2.27 ± 0.07) mg/mL and (0.57 ± 0.04) mg/mL, respectively. The content of MOPS remained relatively stable in the stomach and small intestine; however, their ability to scavenge DPPH radicals and ABTS radicals and exhibit reducing power was attenuated, and the inhibition of α-amylase and α-glucosidase activity was diminished. In conclusion, the ultrasonic extraction of MOPS showed feasibility and revealed antioxidant and hypoglycemic effects. However, the activities were significantly reduced after gastric and small intestinal digestion despite no significant change in the MOPS content.
Collapse
Affiliation(s)
- Gansheng Tan
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China;
| | - Zhouwei Duan
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Guanghua Xia
- College of Food Science and Technology, Hainan University, Haikou 570228, China;
| | - Tian Xin
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China;
| | - Ling Yang
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Feng Liu
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Hui Xie
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China; (G.T.); (Z.D.); (T.X.); (L.Y.); (F.L.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
6
|
Guo Y, Wu Y, Huang T, Huang D, Zeng Q, Wang Z, Hu Y, Liang P, Chen H, Zheng Z, Liang T, Zhai D, Jiang C, Liu L, Zhu H, Liu Q. Licorice flavonoid ameliorates ethanol-induced gastric ulcer in rats by suppressing apoptosis via PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117739. [PMID: 38301986 DOI: 10.1016/j.jep.2024.117739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is the dry roots and rhizomes of Glycyrrhiza uralensis Fisch., Glycyrrhiza glabra L. and Glycyrrhiza inflata Bat., which was first recorded in Shengnong's herbal classic. Licorice flavonoid (LF) is the main compound isolated from licorice with an indispensable action in treating gastric ulcer (GU). However, the underlying mechanisms need to be further explored. AIM OF THE STUDY This study aimed to investigate and further elucidate the mechanisms of LF against ethanol-induced GU using an integrated approach. MATERIALS AND METHODS The anti-GU effects of LF were evaluated in an ethanol-induced gastric injury rat model. Then, the metabolomics approach was applied to explore the specific metabolites and metabolic pathways. Next, the network pharmacology combined with metabolomics strategy was employed to predict the targets and pathways of LF for GU. Finally, these predictions were validated by molecular docking, RT-qPCR, and western blotting. RESULTS LF had a positive impact on gastric injury and regulated the expression of GU-related factors. Upon serum metabolomics analysis, 25 metabolic biomarkers of LF in GU treatment were identified, which were primarily involved in amino acid metabolism, carbohydrate metabolism, and other related processes. Subsequently, a "components-targets-metabolites" network was constructed, revealing six key targets (HSP90AA1, AKT1, MAPK1, EGFR, ESR1, PIK3CA) that may be associated with GU treatment. More importantly, KEGG analysis highlighted the importance of the PI3K/AKT pathway including key targets, as a critical route through which LF exerted its anti-GU effects. Molecular docking analyses confirmed that the core components of LF exhibited a strong affinity for key targets. Furthermore, RT-qPCR and western blotting results indicated that LF could reverse the expression of these targets, activate the PI3K/AKT pathway, and ultimately reduce apoptosis. CONCLUSION LF exerted a gastroprotective effect against gastric ulcer induced by ethanol, and the therapeutic mechanism may involve improving metabolism and suppressing apoptosis through the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Yinglin Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tairun Huang
- Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Dehao Huang
- Huizhou Jiuhui Pharmaceutical Co., Ltd., Huizhou, 516000, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongkai Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zeying Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dan Zhai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|