1
|
Peña-García MV, Moyano-Gallego MJ, Gómez-Melero S, Molero-Payán R, Rodríguez-Cantalejo F, Caballero-Villarraso J. One-Year Impact of Occupational Exposure to Polycyclic Aromatic Hydrocarbons on Sperm Quality. Antioxidants (Basel) 2024; 13:1181. [PMID: 39456435 PMCID: PMC11504984 DOI: 10.3390/antiox13101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) have toxic potential, especially as carcinogens, neurotoxins, and endocrine disruptors. The objective of this study is to know the impact of exposure to PAHs on the reproductive health of male workers who operate in solar thermal plants. METHODS Case-control study. A total of 61 men were included: 32 workers exposed to PAH at a solar thermal plant and 29 unexposed people. Seminal quality was studied both at the cellular level (quantity and quality of sperm) and at the biochemical level (magnitudes of oxidative stress in seminal plasma). RESULTS In exposure to PAHs, a significantly higher seminal leukocyte infiltration was observed, as well as lower activity in seminal plasma of superoxide dismutase (SOD) and a reduced glutathione/oxidised glutathione (GSH/GSSG) ratio. The oxidative stress parameters of seminal plasma did not show a relationship with sperm cellularity, neither in those exposed nor in those not exposed to PAH. CONCLUSION One year of exposure to PAH in a solar thermal plant does not have a negative impact on the sperm cellularity of the worker, either quantitatively (sperm count) or qualitatively (motility, vitality, morphology, or cellular DNA fragmentation). However, PAH exposure is associated with lower antioxidant capacity and higher leukocyte infiltration in seminal plasma.
Collapse
Affiliation(s)
- Mª Victoria Peña-García
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
| | - Mª José Moyano-Gallego
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
| | - Sara Gómez-Melero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (S.G.-M.); (R.M.-P.)
| | - Rafael Molero-Payán
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (S.G.-M.); (R.M.-P.)
| | - Fernando Rodríguez-Cantalejo
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
| | - Javier Caballero-Villarraso
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain; (M.V.P.-G.); (M.J.M.-G.); (F.R.-C.)
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (S.G.-M.); (R.M.-P.)
- Department of Biochemistry and Molecular Biology, Universidad of Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
2
|
Liang S, Yin Y, Zhang Z, Fang Y, Lu G, Li H, Yin Y, Shen M. Moxibustion prevents tripterygium glycoside-induced oligoasthenoteratozoospermia in rats via reduced oxidative stress and modulation of the Nrf2/HO-1 signaling pathway. Aging (Albany NY) 2024; 16:2141-2160. [PMID: 38277193 PMCID: PMC10911353 DOI: 10.18632/aging.205475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024]
Abstract
Oligoasthenoteratozoospermia (OAT) decreases male fertility, seriously affecting the production of offspring. This study clarified the preventive impact of different moxibustion frequencies on OAT and selected the optimal frequency to elucidate the underlying mechanism. An OAT rat model was constructed by gavage of tripterygium glycosides (TGS) suspension. Daily moxibustion (DM) or alternate-day moxibustion (ADM) was administered on the day of TGS suspension administration. Finally, we selected DM for further study based on sperm quality and DNA fragmentation index, testicular and epididymal morphology, and reproductive hormone level results. Subsequently, the oxidative stress (OS) status was evaluated by observing the OS indices levels; malondialdehyde (MDA), 8-hydroxy-deoxyguanosine (8-OHdG), total antioxidant capacity (T-AOC), and total superoxide dismutase (T-SOD) in testicular tissue using colorimetry and enzyme-linked immunosorbent assay. Furthermore, heme oxygenase 1 (HO-1) and nuclear factor erythropoietin-2-related factor 2 (Nrf2) were evaluated using Western blotting. Immunohistochemistry was employed to locate and assess the expression of HO-1 and Nrf2 protein, while quantitative real-time polymerase chain reaction was utilized to detect their mRNA expression. MDA and 8-OHdG levels decreased following DM treatment, while T-SOD and T-AOC increased, suggesting that DM may prevent TGS-induced OAT in rats by decreasing OS in the testis. Furthermore, protein and mRNA expression of Nrf2 and HO-1 in the testis were elevated, indicating that DM may reduce OS by activating the signaling pathway of Nrf2/HO-1. Therefore, DM could prevent OAT in rats via the Nrf2/HO-1 pathway, thereby presenting a promising therapeutic approach against OAT.
Collapse
Affiliation(s)
- Shangjie Liang
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yaqun Yin
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zhizi Zhang
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yansu Fang
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Ge Lu
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Hongxiao Li
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yaoli Yin
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Meihong Shen
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
3
|
Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. SIRT1 and thrombosis. Front Mol Biosci 2024; 10:1325002. [PMID: 38304233 PMCID: PMC10833004 DOI: 10.3389/fmolb.2023.1325002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Thrombosis is a major cause of morbidity and mortality worldwide, with a complex and multifactorial pathogenesis. Recent studies have shown that SIRT1, a member of the sirtuin family of NAD + -dependent deacetylases, plays a crucial role in regulating thrombosis, modulating key pathways including endothelial activation, platelet aggregation, and coagulation. Furthermore, SIRT1 displays anti-inflammatory activity both in vitro, in vivo and in clinical studies, particularly via the reduction of oxidative stress. On these bases, several studies have investigated the therapeutic potential of targeting SIRT1 for the prevention of thrombosis. This review provides a comprehensive and critical overview of the main preclinical and clinical studies and of the current understanding of the role of SIRT1 in thrombosis.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Silvia Galora
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| |
Collapse
|
4
|
Hou Y, He Y, Wang J, Zhou Y, Ma B, Li X, Shi L, Zhang Q. Comprehensive metabolomics profiling of seminal plasma in asthenozoospermia caused by different etiologies. Clin Chim Acta 2023; 548:117530. [PMID: 37652159 DOI: 10.1016/j.cca.2023.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Asthenozoospermia (AZS) is a disease characterized by decreased sperm motility induced by multiple etiologies, and the pathological mechanisms of various AZS are unclear. We simultaneously analyzed the metabolic profiling of four representative AZS to provide new insights into the etiologies of AZS. METHOD Seminal plasma samples were collected from healthy control (HC; n = 30) and four AZS induced by varicocele (VA, n = 30), obesity (OA, n = 22), reproductive system infections (RA; n = 17) and idiopathic (IA, n = 30), respectively, and were analyzed using gas chromatography-mass spectrometry. Disturbed metabolites and metabolic pathways were compared between AZS and HC, as well as IA and the other three AZS. RESULTS A total of 40 different metabolites were identified in the seminal plasma of AZS and HC, of which lactic acid, fructose, citric acid, glutamine and pyruvic acid metabolic abnormalities associated with all the AZS groups, while each AZS group had unique metabolic changes. RA was significantly separated from the other three AZS, and metabolites such as cholesterol, octadecanoic acid and serine mainly contributed to the separation. CONCLUSION The comprehensive metabolomic analysis and comparison of four various AZS provided evidence and clues for the mechanism mining, which will benefit future etiology, diagnosis and treatment of AZS.
Collapse
Affiliation(s)
- Yuyang Hou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yuanping He
- School of Economics & Management, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jingjie Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yanfen Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xin Li
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Liang Shi
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|