1
|
Wu QJ, Li Q, Yang P, Du L. Itaconate to treat acute lung injury: recent advances and insights from preclinical models. Am J Transl Res 2024; 16:3480-3497. [PMID: 39262751 PMCID: PMC11384376 DOI: 10.62347/nuin2087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/22/2024] [Indexed: 09/13/2024]
Abstract
Acute lung injury (ALI) is defined as the acute onset of diffuse bilateral pulmonary infiltration, leading to PaO2/FiO2 ≤ 300 mmHg without clinical evidence of left atrial hypertension. Acute respiratory distress syndrome (ARDS) involves more severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg). Treatment of ALI and ARDS has received renewed attention as the incidence of ALI caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has increased. Itaconate and its derivatives have shown therapeutic potential against ALI. This review provides an in-depth summary of the mechanistic research of itaconate in the field of acute lung injury, including inducing autophagy, preventing ferroptosis and pyroptosis, shifting macrophage polarization to an anti-inflammatory M2 phenotype, inhibiting neutrophil activation, regulating epigenetic modifications, and repressing aerobic glycolysis. These compounds merit further consideration in clinical trials. We anticipate that the clinical translation of itaconate-based drugs can be accelerated.
Collapse
Affiliation(s)
- Qin Juan Wu
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
- Department of Anesthesiology, Chengdu Second People's Hospital Chengdu 610000, Sichuan, China
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| | - Ping Yang
- Department of Anesthesiology, Chongqing University Three Gorges Hospital Chongqing 404100, China
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| |
Collapse
|
2
|
Ye D, Wang P, Chen LL, Guan KL, Xiong Y. Itaconate in host inflammation and defense. Trends Endocrinol Metab 2024; 35:586-606. [PMID: 38448252 DOI: 10.1016/j.tem.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Immune cells undergo rapid and extensive metabolic changes during inflammation. In addition to contributing to energetic and biosynthetic demands, metabolites can also function as signaling molecules. Itaconate (ITA) rapidly accumulates to high levels in myeloid cells under infectious and sterile inflammatory conditions. This metabolite binds to and regulates the function of diverse proteins intracellularly to influence metabolism, oxidative response, epigenetic modification, and gene expression and to signal extracellularly through binding the G protein-coupled receptor (GPCR). Administration of ITA protects against inflammatory diseases and blockade of ITA production enhances antitumor immunity in preclinical models. In this article, we review ITA metabolism and its regulation, discuss its target proteins and mechanisms, and conjecture a rationale for developing ITA-based therapeutics to treat inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Dan Ye
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Pu Wang
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Xiong
- Cullgen Inc., 12730 High Bluff Drive, San Diego, CA 92130, USA.
| |
Collapse
|
3
|
Yin M, Wadhwa R, Marshall JE, Gillis CM, Kim RY, Dua K, Palsson-McDermott EM, Fallon PG, Hansbro PM, O’Neill LAJ. 4-Octyl Itaconate Alleviates Airway Eosinophilic Inflammation by Suppressing Chemokines and Eosinophil Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:13-23. [PMID: 37991425 PMCID: PMC7617081 DOI: 10.4049/jimmunol.2300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023]
Abstract
4-Octyl itaconate (4-OI) is a derivative of the Krebs cycle-derived metabolite itaconate and displays an array of antimicrobial and anti-inflammatory properties through modifying cysteine residues within protein targets. We have found that 4-OI significantly reduces the production of eosinophil-targeted chemokines in a variety of cell types, including M1 and M2 macrophages, Th2 cells, and A549 respiratory epithelial cells. Notably, the suppression of these chemokines in M1 macrophages was found to be NRF2-dependent. In addition, 4-OI can interfere with IL-5 signaling and directly affect eosinophil differentiation. In a model of eosinophilic airway inflammation in BALB/c mice, 4-OI alleviated airway resistance and reduced eosinophil recruitment to the lungs. Our findings suggest that itaconate derivatives could be promising therapeutic agents for the treatment of eosinophilic asthma.
Collapse
Affiliation(s)
- Maureen Yin
- School of Biochemistry and Immunology, Trinity Biomedical
Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute and University
of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South
Wales, Australia
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University
of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South
Wales, Australia
| | - Caitlin M Gillis
- Centre for Inflammation, Centenary Institute and University
of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South
Wales, Australia
| | - Richard Y Kim
- School of Life Sciences, Faculty of Science, University of
Technology Sydney, Sydney, New South Wales, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute and University
of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South
Wales, Australia
| | - Eva M Palsson-McDermott
- School of Biochemistry and Immunology, Trinity Biomedical
Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Padraic G Fallon
- School of Biochemistry and Immunology, Trinity Biomedical
Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute,
Trinity College Dublin, Dublin, Ireland
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University
of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South
Wales, Australia
- Priority Research Centre for Immune Health, Hunter Medical
Research Institute and University of Newcastle, Newcastle, New South Wales,
Australia
| | - Luke AJ O’Neill
- School of Biochemistry and Immunology, Trinity Biomedical
Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Nematullah M, Fatma M, Rashid F, Ayasolla K, Ahmed ME, Mir S, Zahoor I, Rattan R, Giri S. Immuno-Responsive Gene-1: A mitochondrial gene regulates pathogenic Th17 in CNS autoimmunity mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.24.573264. [PMID: 38234838 PMCID: PMC10793427 DOI: 10.1101/2023.12.24.573264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Pathogenic Th17 cells are crucial to CNS autoimmune diseases like multiple sclerosis (MS), though their control by endogenous mechanisms is unknown. RNAseq analysis of brain glial cells identified immuno-responsive gene 1 (Irg1), a mitochondrial-related enzyme-coding gene, as one of the highly upregulated gene under inflammatory conditions which were further validated in the spinal cord of animals with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Moreover, Irg1 mRNA and protein levels in myeloid, CD4, and B cells were higher in the EAE group, raising questions about its function in CNS autoimmunity. We observed that Irg1 knockout (KO) mice exhibited severe EAE disease and greater mononuclear cell infiltration, including triple-positive CD4 cells expressing IL17a, GM-CSF, and IFNγ. Lack of Irg1 in macrophages led to higher levels of Class II expression and polarized myelin primed CD4 cells into pathogenic Th17 cells through the NLRP3/IL1β axis. Our findings show that Irg1 in macrophages plays an important role in the formation of pathogenic Th17 cells, emphasizing its potential as a therapy for autoimmune diseases, including MS.
Collapse
Affiliation(s)
- Mohammad Nematullah
- Department of Neurology, Department of Women’s Health Services, Henry Ford Hospital, E&R Building, Room 4051, Detroit, USA
| | - Mena Fatma
- Department of Neurology, Department of Women’s Health Services, Henry Ford Hospital, E&R Building, Room 4051, Detroit, USA
| | - Faraz Rashid
- Department of Neurology, Department of Women’s Health Services, Henry Ford Hospital, E&R Building, Room 4051, Detroit, USA
| | - Kameshwar Ayasolla
- Department of Neurology, Department of Women’s Health Services, Henry Ford Hospital, E&R Building, Room 4051, Detroit, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, Department of Women’s Health Services, Henry Ford Hospital, E&R Building, Room 4051, Detroit, USA
| | - Sajad Mir
- Department of Neurology, Department of Women’s Health Services, Henry Ford Hospital, E&R Building, Room 4051, Detroit, USA
| | - Insha Zahoor
- Department of Neurology, Department of Women’s Health Services, Henry Ford Hospital, E&R Building, Room 4051, Detroit, USA
| | - Ramandeep Rattan
- Division of Gynaecology Oncology, Department of Women’s Health Services, Henry Ford Hospital, E&R Building, Room 4051, Detroit, USA
| | - Shailendra Giri
- Department of Neurology, Department of Women’s Health Services, Henry Ford Hospital, E&R Building, Room 4051, Detroit, USA
| |
Collapse
|
5
|
Luo G, Zhou Z, Huang C, Zhang P, Sun N, Chen W, Deng C, Li X, Wu P, Tang J, Qing L. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps. Heliyon 2023; 9:e17909. [PMID: 37456049 PMCID: PMC10345368 DOI: 10.1016/j.heliyon.2023.e17909] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Background Perforator flaps are widely used in hand microsurgery to reconstruct and repair soft tissue injuries. However, ischemia and subsequent ischemia-reperfusion injury may cause distal necrosis of the flap. Itaconic acid (IA) is a modulator of macrophage function, which exerts anti-inflammatory effects in macrophage activation. Methods The necrotic area of the flap was detected by measuring the flap temperature with an infrared thermometer. Flap cell apoptosis was detected by TUNEL staining and Western blot analysis of the apoptosis-associated proteins Bcl-2 and Bax. HE staining was used to detect angiogenesis of the skin flaps. CD31 was detected to identify positive vascular expression, and the survival of choke vessels in different areas of the skin flap was assessed by arteriography. In addition, Western blot was performed to quantify the expressions of VEGF, Nrf2, LC3II, SQSTM1, and CTSD. Results Itaconic acid raises VEGF protein levels in skin flaps and the number of CD31-positive vessels. The skin flaps in the IA treatment group exhibited higher neovascularization and less necrosis than those in the control group. The results of TUNEL staining and Western blot revealed that Itaconic acid attenuated apoptosis in the ischemic area of flap. The combination of itaconic acid and Nrf2 inhibitor ML385 reversed this beneficial effect. The results revealed that itaconic acid attenuated apoptosis, enhanced angiogenesis, and enhanced autophagy. Conclusion In summary, our findings indicate that itaconic acid might be an effective treatment to reduce flap necrosis. Additionally, this study identified a novel mechanism for the effects of itaconic acid on flap survival.
Collapse
Affiliation(s)
- Gaojie Luo
- Department of Microsurgery and Hand Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Zekun Zhou
- Department of Microsurgery and Hand Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Chengxiong Huang
- Department of Microsurgery and Hand Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Peiyao Zhang
- Department of Microsurgery and Hand Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Nianzhe Sun
- Department of Microsurgery and Hand Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Wei Chen
- Department of Microsurgery and Hand Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Chao Deng
- Department of Microsurgery and Hand Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Xiaoxiao Li
- Department of Pathology, Changsha Medical University, Changsha, China
| | - Panfeng Wu
- Department of Microsurgery and Hand Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Juyu Tang
- Department of Microsurgery and Hand Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Liming Qing
- Department of Microsurgery and Hand Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| |
Collapse
|