1
|
Gupta D, Martinez DC, Puertas-Mejía MA, Hearnden VL, Reilly GC. The Effects of Fucoidan Derived from Sargassum filipendula and Fucus vesiculosus on the Survival and Mineralisation of Osteogenic Progenitors. Int J Mol Sci 2024; 25:2085. [PMID: 38396762 PMCID: PMC10889223 DOI: 10.3390/ijms25042085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Osteosarcoma is a bone cancer primarily affecting teenagers. It has a poor prognosis and diminished quality of life after treatment due to chemotherapy side effects, surgical complications and post-surgical osteoporosis risks. The sulphated polysaccharide fucoidan, derived from brown algae, has been a subject of interest for its potential anti-cancer properties and its impact on bone regeneration. This study explores the influence of crude, low-molecular-weight (LMW, 10-50 kDa), medium-molecular-weight (MMW, 50-100 kDa) and high-molecular-weight (HMW, >100 kDa) fractions from Sargassum filipendula, harvested from the Colombian sea coast, as well as crude fucoidan from Fucus vesiculosus, on a specific human osteoprogenitor cell type, human embryonic-derived mesenchymal stem cells. Fourier transform infrared spectroscopy coupled with attenuated total reflection (FTIR-ATR) results showed the highest sulphation levels and lowest uronic acid content in crude extract from F. vesiculosus. There was a dose-dependent drop in focal adhesion formation, proliferation and osteogenic differentiation of cells for all fucoidan types, but the least toxicity was observed for LMW and MMW. Transmission electron microscopy (TEM), JC-1 (5,50,6,60-tetrachloro-1,10,3,30-tetraethylbenzimi-dazolylcarbocyanine iodide) staining and cytochrome c analyses confirmed mitochondrial damage, swollen ER and upregulated autophagy due to fucoidans, with the highest severity in the case of F. vesiculosus fucoidan. Stress-induced apoptosis-like cell death by F. vesiculosus fucoidan and stress-induced necrosis-like cell death by S. filipendula fucoidans were also confirmed. LMW and MMW doses of <200 ng/mL were the least toxic and showed potential osteoinductivity. This research underscores the multifaceted impact of fucoidans on osteoprogenitor cells and highlights the delicate balance between potential therapeutic benefits and the challenges involved in using fucoidans for post-surgery treatments in patients with osteosarcoma.
Collapse
Affiliation(s)
- Dhanak Gupta
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.C.M.); (G.C.R.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK
| | - Diana C. Martinez
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.C.M.); (G.C.R.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK
- Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warszawa, Poland
| | - Miguel Angel Puertas-Mejía
- Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Vanessa L. Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.C.M.); (G.C.R.)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.C.M.); (G.C.R.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
2
|
Pekkoh J, Ruangrit K, Kaewkod T, Tragoolpua Y, Hoijang S, Srisombat L, Wichapein A, Pathom-Aree W, Kato Y, Wang G, Srinuanpan S. Innovative Eco-Friendly Microwave-Assisted Rapid Biosynthesis of Ag/AgCl-NPs Coated with Algae Bloom Extract as Multi-Functional Biomaterials with Non-Toxic Effects on Normal Human Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2141. [PMID: 37513152 PMCID: PMC10383740 DOI: 10.3390/nano13142141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Harmful algal blooms impact human welfare and are a global concern. Sargassum spp., a type of algae or seaweed that can potentially bloom in certain regions of the sea around Thailand, exhibits a noteworthy electron capacity as the sole reducing and stabilizing agent, which suggests its potential for mediating nanoparticle composites. This study proposes an eco-friendly microwave-assisted biosynthesis (MAS) method to fabricate silver nanoparticles coated with Sargassum aqueous extract (Ag/AgCl-NPs-ME). Ag/AgCl-NPs-ME were successfully synthesized in 1 min using a 20 mM AgNO3 solution without additional hazardous chemicals. UV-visible spectroscopy confirmed their formation through a surface plasmon resonance band at 400-500 nm. XRD and FTIR analyses verified their crystalline nature and involvement of organic molecules. TEM and SEM characterization showed well-dispersed Ag/AgCl-NPs-ME with an average size of 36.43 nm. The EDS results confirmed the presence of metallic Ag+ and Cl- ions. Ag/AgCl-NPs-ME exhibited significant antioxidant activity against free radicals (DPPH, ABTS, and FRAP), suggesting their effectiveness. They also inhibited enzymes (tyrosinase and ACE) linked to diseases, indicating therapeutic potential. Importantly, the Ag/AgCl-NPs-ME displayed remarkable cytotoxicity against cancer cells (A375, A549, and Caco-2) while remaining non-toxic to normal cells. DNA ladder and TUNEL assays confirmed the activation of apoptosis mechanisms in cancer cells after a 48 h treatment. These findings highlight the versatile applications of Ag/AgCl-NPs-ME in food, cosmetics, pharmaceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supawitch Hoijang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Laongnuan Srisombat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Antira Wichapein
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|