1
|
Doost ME, Hong J, Broatch JE, Applegate MT, Wagner CE, Marshall PA, Jurutka PW. Synergistic Activation of VDR-RXR Heterodimers by Vitamin D and Rexinoids in Human Kidney and Brain Cells. Cells 2024; 13:1878. [PMID: 39594626 PMCID: PMC11592939 DOI: 10.3390/cells13221878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), binds to the vitamin D receptor (VDR) with high affinity. The VDR then heterodimerizes with the retinoid X receptor (RXR) and associates with vitamin D response elements (VDREs) to regulate the transcription of target genes. Bexarotene (Bex) is an RXR ligand (rexinoid) developed to treat cutaneous T-cell lymphoma and is a putative therapeutic for other diseases. We postulate that VDR ligands (1,25D) and RXR ligands (Bex/analogs) can "synergize" to "super-activate" the VDR-RXR heterodimer. This "cross-talk" could allow disorders treated with high-dose Bex therapy (leading to significant adverse side effects) to instead be treated using both low-dose Bex and vitamin D. Thus, we designed experiments to examine the effect of both VDR and RXR ligands, alone and in combination, to activate VDR-RXR-mediated transcription. The goal was to determine if selected RXR-specific ligands can synergize with vitamin D to amplify RXR-VDR activity. The results demonstrate a synergistic effect with both Bex and 1,25D which could be further modulated by (1) the protein levels (or polymorphic version) of VDR present in the cell, (2) the concentration of the ligands, (3) the cellular "background" (e.g., brain cells versus kidney cells), (4) the nature of the VDRE platform, or (5) the type of rexinoid (Bex analogs). Our findings suggest that diseases that respond to treatment with either vitamin D, or with rexinoids, may be amenable to enhanced therapeutic potential by employing multi-ligand dosing via combinatorial therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Pamela A. Marshall
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (M.E.D.); (J.H.); (J.E.B.); (M.T.A.); (C.E.W.); (P.W.J.)
| | | |
Collapse
|
2
|
Dziedzic EA, Gąsior JS, Koseska K, Karol M, Czestkowska E, Pawlińska K, Kochman W. The Impact of Neutrophil-to-High-Density Lipoprotein Ratio and Serum 25-Hydroxyvitamin D on Ischemic Heart Disease. J Clin Med 2024; 13:6597. [PMID: 39518736 PMCID: PMC11545957 DOI: 10.3390/jcm13216597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Background: This study describes the complex association between the neutrophil-to-high-density lipoprotein cholesterol ratio (NHR), 25-hydroxyvitamin D (25(OH)D) levels, and cardiovascular disease (CVD), such as stable ischemic heart disease (IHD), ST elevation myocardial infarction (STEMI), non-ST-segment elevation myocardial infarction (NSTEMI), and unstable angina (UA). Methods: The serum 25(OH)D concentration and NHR values were analyzed in groups of patients with chronic coronary syndrome (CCS) and acute coronary syndrome (ACS). The severity of coronary artery atherosclerosis was determined using the Coronary Artery Surgery Study (CASS) scale. Results: Significant differences in 25(OH)D and NHR concentrations were observed between CCS and (ACS)/STEMI patients (p < 0.01). Higher 25(OH)D concentrations were associated with the diagnosis of CCS, and higher NHR values with the diagnosis of ACS/STEMI. The NHR threshold for ACS was set at 0.10 (p < 0.001). Patients without significant coronary artery stenosis showed significantly higher 25(OH)D levels and lower NHR values (p < 0.01). Conclusions: The significant correlation between 25(OH)D, HDL, and the NHR suggests that vitamin D, through its influence on inflammatory processes and lipid metabolism, may play a role in the pathogenesis of chronic and acute coronary syndromes. The suggested bidirectional relationship between the NHR and 25(OH)D and the role of the NHR as a predictor of vitamin D levels require further well-designed studies.
Collapse
Affiliation(s)
- Ewelina A. Dziedzic
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Jakub S. Gąsior
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Kamila Koseska
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University of Warsaw, 01-938 Warsaw, Poland
| | - Michał Karol
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University of Warsaw, 01-938 Warsaw, Poland
| | - Ewa Czestkowska
- Department of Cardiology, Bielanski Hospital, 01-809 Warsaw, Poland
| | - Kamila Pawlińska
- Department of Cardiology, Bielanski Hospital, 01-809 Warsaw, Poland
| | - Wacław Kochman
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
3
|
Grant WB, Boucher BJ. How Follow-Up Period in Prospective Cohort Studies Affects Relationship Between Baseline Serum 25(OH)D Concentration and Risk of Stroke and Major Cardiovascular Events. Nutrients 2024; 16:3759. [PMID: 39519592 PMCID: PMC11547645 DOI: 10.3390/nu16213759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Prospective cohort studies are useful for studying how biomolecular status affects risk of adverse health outcomes. Less well known is that the longer the follow-up time, the lower the association (or "apparent effect") due to "regression dilution". Here, we evaluate how follow-up interval from baseline to "event" affects the relationship between baseline serum 25-hydroxyvitamin D [25(OH)D] concentration and the later incidence of stroke and major cardiovascular events (MACEs). Methods: Findings for the relative risk (RR) of stroke and MACEs with respect to serum 25(OH)D concentrations at baseline from prospective cohort studies were plotted against mean follow-up time. Fifteen studies from mainly European countries and the United States were used for stroke and nine studies for MACEs. Linear regression analyses were used to study data for follow-up periods of up to 10 years and for more than 10 years. Results: For stroke, the linear regression fit for 1-10 years is RR = 0.34 + (0.065 × follow-up [years]), r = 0.84, adjusted r2 = 0.67, p < 0.001. No significant variations in association were found for studies with follow-up periods of 10-20 years. For MACEs, the linear fit for 1-8.1 years is RR = 0.61 + (0.055 × follow-up [years]), r = 0.81, adjusted r2 = 0.59, p = 0.03. Discussion: The shorter the follow-up period, the greater the apparent effect of better vitamin D status in reducing risk of stroke and MACEs. In addition, the apparent effect of higher 25(OH)D concentration found for the shortest follow-up time is more than twice as great as the estimate based on average follow-up intervals for all studies. Mechanisms have been found to explain how higher serum 25(OH)D concentrations could reduce risk of stroke and MACEs. Randomized controlled trials have not shown that vitamin D supplementation significantly reduces risk of either stroke or MACEs, probably because risk of both outcomes increases rapidly below 15 ng/mL (38 nmol/L) and it is difficult in Western developed countries to enroll enough participants with concentrations that low. Nonetheless, vitamin D's role in reducing risk of stroke and MACEs could be considered causal on the basis of an evaluation of the evidence using Hill's criteria for causality in a biological system. Conclusions: Serum 25(OH)D concentrations above 20 ng/mL are associated with significantly reduced risk of stroke and MACEs prospectively and in an apparent causal manner. Raising serum 25(OH)D concentrations to >20 ng/mL should, therefore, be recommended for everyone likely to be at risk for stroke or MACEs and indeed in the general population.
Collapse
Affiliation(s)
- William B. Grant
- Sunlight, Nutrition and Health Research Center, 1745 Pacific Ave., Suite 504, San Francisco, CA 94109, USA
| | - Barbara J. Boucher
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| |
Collapse
|
4
|
Vassalle C. Editorial: Vitamin D: from pathophysiology to clinical impact. Front Nutr 2024; 11:1506137. [PMID: 39534436 PMCID: PMC11554528 DOI: 10.3389/fnut.2024.1506137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Cristina Vassalle
- Fondazione G Monasterio, Fondazione CNR-Regione Toscana G Monasterio, Pisa, Italy
| |
Collapse
|
5
|
Aiello A, Calabrone L, Noonan DM, Corradino P, Nofri S, Cristoni S, Accardi G, Candore G, Caruso C, Zinellu A, Albini A. Effect of a Phytochemical-Rich Olive-Derived Extract on Anthropometric, Hematological, and Metabolic Parameters. Nutrients 2024; 16:3068. [PMID: 39339668 PMCID: PMC11435251 DOI: 10.3390/nu16183068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Extra virgin olive oil is a fundamental component of the Mediterranean diet. It contains several molecules that sustain human well-being by modulating cellular metabolism and exerting antioxidant, anti-inflammatory, and anti-ageing effects to protect normal tissues, and it can exert anti-angiogenic and pro-apoptotic effects on cancer cells. Metabolites found in different parts of the olive tree, including leaves, also possess properties that might help in cancer prevention and promote wellness in aging. Olive mill wastewater (OMWW), a liquid residue produced during olive oil extraction, represents an environmental issue. However, it is rich in phytochemicals with potential beneficial properties. Dietary supplements based on OMWW can be produced for nutritional supplementation with advantages to the ecology. PURPOSE This work aims to measure hematochemical, anthropometric, and metabolomic parameters in volunteers taking an OMWW dietary supplement, Oliphenolia® (OMWW-OL). METHODS The supplementation of OMWW-OL 25 mL twice daily for 30 days was tested on a pilot cohort of volunteers with characteristics close to metabolic syndrome. Hematochemical, anthropometric, serum biomarkers and serum metabolomic parameters were analyzed before the intervention, at 30 days, and 30 days after stopping consumption. RESULTS A total of 29 volunteers were enrolled, and 23 completed the study. The participants' parameters at baseline were measured, and then twice daily at 30 days of treatment and 30 days after assumption discontinuation. Although treatment was with an olive derivative, their weight did not increase. Their body mass index, instead of augmenting, slightly decreased, particularly in the women. Also, hydration increased, especially in the women, while blood pressure, glycemia, and insulin decreased. Cholesterol, high-density lipoproteins, and triglycerides were stable, and LDL levels decreased, while vitamin D levels, alongside calcium, perceptibly increased. Albumin also increased. All the values were in support of an equilibrium, with no damaging effects. By mass spectrometry analysis, we also found favorable changes in the vitamin D/histamine and homocysteine/methionine ratios, an increase in a new metabolite of unknown formula, and the vitamin D/unknown metabolite ratio. CONCLUSIONS Supplementation of OMWW-OL has no detrimental effects and might imply the beneficial modulation of several biological parameters. Although this is a small pilot study, with limited potency, it preliminarily suggests that the OMWW extract use could be potentially valuable for people at risk of metabolic syndrome. Some of these parameters could also be relevant in supporting healthy ageing and in cancer prevention.
Collapse
Affiliation(s)
- Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Luana Calabrone
- ISB—Ion Source & Biotecnologie Srl, Rho, 20017 Milan, Italy; (L.C.); (S.C.)
| | - Douglas M. Noonan
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Paola Corradino
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Sara Nofri
- University of Florence, 50139 Florence, Italy;
| | - Simone Cristoni
- ISB—Ion Source & Biotecnologie Srl, Rho, 20017 Milan, Italy; (L.C.); (S.C.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Adriana Albini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| |
Collapse
|
6
|
Liang Z, Wang Z, Liu X, He Y. Confronting the global obesity epidemic: investigating the role and underlying mechanisms of vitamin D in metabolic syndrome management. Front Nutr 2024; 11:1416344. [PMID: 39183985 PMCID: PMC11342275 DOI: 10.3389/fnut.2024.1416344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
The escalating prevalence of MetS, driven by global obesity trends, underscores the urgent need for innovative therapeutic strategies. To gain a deeper understanding of the therapeutic potential of vitamin D in addressing MetS, we embarked on a targeted literature review that thoroughly examines the scientific underpinnings and pivotal discoveries derived from pertinent studies, aiming to unravel the intricate mechanisms through which vitamin D exerts its effects on MetS and its components. This article explores the multifunctional role of vitamin D in the management of MetS, focusing on its regulatory effects on insulin sensitivity, lipid metabolism, inflammation, and immune response. Through an extensive review of current research, we unveil the complex mechanisms by which vitamin D influences MetS components, highlighting its potential as a therapeutic agent. Our analysis reveals that vitamin D's efficacy extends beyond bone health to include significant impacts on cellular and molecular pathways critical to MetS. We advocate for further research to optimize vitamin D supplementation as a component of precision medicine for MetS, considering the safety concerns related to dosage and long-term use.
Collapse
Affiliation(s)
- Zihui Liang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Ziliang Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueyong Liu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Yu He
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Fliri A, Kajiji S. Effects of vitamin D signaling in cardiovascular disease: centrality of macrophage polarization. Front Cardiovasc Med 2024; 11:1388025. [PMID: 38984353 PMCID: PMC11232491 DOI: 10.3389/fcvm.2024.1388025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Among the leading causes of natural death are cardiovascular diseases, cancer, and respiratory diseases. Factors causing illness include genetic predisposition, aging, stress, chronic inflammation, environmental factors, declining autophagy, and endocrine abnormalities including insufficient vitamin D levels. Inconclusive clinical outcomes of vitamin D supplements in cardiovascular diseases demonstrate the need to identify cause-effect relationships without bias. We employed a spectral clustering methodology capable of analyzing large diverse datasets for examining the role of vitamin D's genomic and non-genomic signaling in disease in this study. The results of this investigation showed the following: (1) vitamin D regulates multiple reciprocal feedback loops including p53, macrophage autophagy, nitric oxide, and redox-signaling; (2) these regulatory schemes are involved in over 2,000 diseases. Furthermore, the balance between genomic and non-genomic signaling by vitamin D affects autophagy regulation of macrophage polarization in tissue homeostasis. These findings provide a deeper understanding of how interactions between genomic and non-genomic signaling affect vitamin D pharmacology and offer opportunities for increasing the efficacy of vitamin D-centered treatment of cardiovascular disease and healthy lifespans.
Collapse
Affiliation(s)
- Anton Fliri
- Emergent System Analytics LLC, Clinton, CT, United States
| | - Shama Kajiji
- Emergent System Analytics LLC, Clinton, CT, United States
| |
Collapse
|
8
|
Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients 2024; 16:1762. [PMID: 38892695 PMCID: PMC11174782 DOI: 10.3390/nu16111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Autoimmune thyroid diseases (AITD) are among the most frequent autoimmune disorders, with a multifactorial etiology in which both genetic and environmental determinants are probably involved. Celiac disease (CeD) also represents a public concern, given its increasing prevalence due to the recent improvement of screening programs, leading to the detection of silent subtypes. The two conditions may be closely associated due to common risk factors, including genetic setting, changes in the composition and diversity of the gut microbiota, and deficiency of nutrients like vitamin D. This comprehensive review discussed the current evidence on the pivotal role of vitamin D in modulating both gut microbiota dysbiosis and immune system dysfunction, shedding light on the possible relevance of an adequate intake of this nutrient in the primary prevention of AITD and CeD. While future technology-based strategies for proper vitamin D supplementation could be attractive in the context of personalized medicine, several issues remain to be defined, including standardized assays for vitamin D determination, timely recommendations on vitamin D intake for immune system functioning, and longitudinal studies and randomized controlled trials to definitely establish a causal relationship between serum vitamin D levels and the onset of AITD and CeD.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
9
|
Flores T, Kerschbaumer C, Jaklin FJ, Glisic C, Sabitzer H, Nedomansky J, Wolf P, Weber M, Bergmeister KD, Schrögendorfer KF. High-Volume Liposuction in Lipedema Patients: Effects on Serum Vitamin D. J Clin Med 2024; 13:2846. [PMID: 38792387 PMCID: PMC11121803 DOI: 10.3390/jcm13102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Lipedema is a subcutaneous adipose tissue disorder characterized by increased pathological adipocytes mainly in the extremities. Vitamin D is stored in adipocytes, and serum levels inversely correlate with BMI. As adipocytes are removed during liposuction, lipedema patients might be prone to further substantial vitamin D loss while their levels are already decreased. Therefore, we examined the effect of liposuction on perioperative serum 25-hydroxyvitamin D levels. Methods: In patients undergoing lipedema liposuction, blood samples were obtained pre- and postoperatively. Statistical analyses were performed to correlate the volume of lipoaspirate, patients' BMI and number of sessions to vitamin D levels. Results: Overall, 213 patients were analyzed. Mean liposuction volume was 6615.33 ± 3884.25 mL, mean BMI was 32.18 ± 7.26 kg/m2. mean preoperative vitamin D levels were 30.1 ± 14.45 ng/mL (borderline deficient according to the endocrine society) and mean postoperative vitamin D levels were 21.91 ± 9.18 ng/mL (deficient). A significant decrease in serum vitamin D was seen in our patients (p < 0.001) of mean 7.83 ng/mL. The amount of vitamin D loss was not associated with BMI or aspiration volume in our patients (p > 0.05). Interestingly, vitamin D dynamics showed a steady drop regardless of volume aspirated or preoperative levels. Conclusions: Many lipedema patients have low vitamin D levels preoperatively. Liposuction significantly reduced these levels additionally, regardless of aspirated volume or BMI. However, vitamin D loss was constant and predictable; thus, patients at risk are easily identified. Overall, lipedema patients undergoing liposuction are prone to vitamin D deficiency, and the long-term effects in this population are currently unknown.
Collapse
Affiliation(s)
- Tonatiuh Flores
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria; (C.K.); (C.G.); (H.S.); (J.N.); (M.W.); (K.D.B.); (K.F.S.)
- Clinical Department of Plastic, Aesthetic and Reconstructive Surgery, University Clinic of St. Poelten, 3100 St. Poelten, Austria
| | - Celina Kerschbaumer
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria; (C.K.); (C.G.); (H.S.); (J.N.); (M.W.); (K.D.B.); (K.F.S.)
| | - Florian J. Jaklin
- Clinical Laboratory for Bionic Extremity Reconstruction, University Clinic for Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christina Glisic
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria; (C.K.); (C.G.); (H.S.); (J.N.); (M.W.); (K.D.B.); (K.F.S.)
- Clinical Department of Plastic, Aesthetic and Reconstructive Surgery, University Clinic of St. Poelten, 3100 St. Poelten, Austria
| | - Hugo Sabitzer
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria; (C.K.); (C.G.); (H.S.); (J.N.); (M.W.); (K.D.B.); (K.F.S.)
- Clinical Department of Plastic, Aesthetic and Reconstructive Surgery, University Clinic of St. Poelten, 3100 St. Poelten, Austria
| | - Jakob Nedomansky
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria; (C.K.); (C.G.); (H.S.); (J.N.); (M.W.); (K.D.B.); (K.F.S.)
- Clinical Department of Plastic, Aesthetic and Reconstructive Surgery, University Clinic of St. Poelten, 3100 St. Poelten, Austria
| | - Peter Wolf
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | - Michael Weber
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria; (C.K.); (C.G.); (H.S.); (J.N.); (M.W.); (K.D.B.); (K.F.S.)
| | - Konstantin D. Bergmeister
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria; (C.K.); (C.G.); (H.S.); (J.N.); (M.W.); (K.D.B.); (K.F.S.)
- Clinical Department of Plastic, Aesthetic and Reconstructive Surgery, University Clinic of St. Poelten, 3100 St. Poelten, Austria
- Clinical Laboratory for Bionic Extremity Reconstruction, University Clinic for Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Klaus F. Schrögendorfer
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria; (C.K.); (C.G.); (H.S.); (J.N.); (M.W.); (K.D.B.); (K.F.S.)
- Clinical Department of Plastic, Aesthetic and Reconstructive Surgery, University Clinic of St. Poelten, 3100 St. Poelten, Austria
| |
Collapse
|
10
|
Abed MN, Alassaf FA, Qazzaz ME. Exploring the Interplay between Vitamin D, Insulin Resistance, Obesity and Skeletal Health. J Bone Metab 2024; 31:75-89. [PMID: 38886966 PMCID: PMC11184154 DOI: 10.11005/jbm.2024.31.2.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 06/20/2024] Open
Abstract
Vitamin D (ViD), plays an important role in calcium absorption and bone mineralization, is associated with bone mineral density. Severe deficiency in ViD has long been linked to conditions such as rickets in children and osteomalacia in adults, revealing its substantial role in skeletal health. Additionally, investigations show an existing interconnection between ViD and insulin resistance (Ins-R), especially in patients with type 2 diabetes mellitus (T2DM). Obesity, in conjunction with Ins-R, may augment the risk of osteoporosis and deterioration of skeletal health. This review aims to examine recent studies on the interplay between ViD, Ins-R, obesity, and their impact on skeletal health, to offer insights into potential therapeutic strategies. Cochrane Library, Google Scholar, and Pubmed were searched to investigate relevant studies until December 2023. Current research demonstrates ViD's impact on pancreatic β-cell function, systemic inflammation, and insulin action regulation. Our findings highlight an intricate association between ViD, Ins-R, obesity, and skeletal health, providing a perspective for the prevention and/or treatment of skeletal disorders in patients with obesity, Ins-R, and T2DM.
Collapse
Affiliation(s)
- Mohammed N. Abed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul,
Iraq
| | - Fawaz A. Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul,
Iraq
| | - Mohannad E. Qazzaz
- Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, University of Mosul, Mosul,
Iraq
| |
Collapse
|
11
|
Gaggini M, Marchi F, Pylypiv N, Parlanti A, Storti S, Paradossi U, Berti S, Vassalle C. Vitamin D and Ceramide Metabolomic Profile in Acute Myocardial Infarction. Metabolites 2024; 14:233. [PMID: 38668361 PMCID: PMC11052114 DOI: 10.3390/metabo14040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sphingolipids (SLs) influence several cellular pathways, while vitamin D exerts many extraskeletal effects in addition to its traditional biological functions, including the modulation of calcium homeostasis and bone health. Moreover, Vitamin D and SLs affect the regulation of each others' metabolism; hence, this study aims to evaluate the relationship between the levels of 25(OH)D and ceramides in acute myocardial infarction (AMI). In particular, the blood abundance of eight ceramides and 25(OH)D was evaluated in 134 AMI patients (aged 68.4 ± 12.0 years, 72% males). A significant inverse correlation between 25(OH)D and both Cer(d18:1/16:0) and Cer(d18:1/18:0) was found; indeed, patients with severe hypovitaminosis D (<10 ng/mL) showed the highest levels of the two investigated ceramides. Moreover, diabetic/dyslipidemic patients with suboptimal levels of 25(OH)D (<30 ng/mL) had higher levels of both the ceramides when compared with the rest of the population. On the other hand, 25(OH)D remained an independent determinant for Cer(d18:1/16:0) (STD Coeff -0.18, t-Value -2, p ≤ 0.05) and Cer(d18:1/18:0) (-0.2, -2.2, p < 0.05). In light of these findings, the crosstalk between sphingolipids and vitamin D may unravel additional mechanisms by which these molecules can influence CV risk in AMI.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy;
| | - Federica Marchi
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Nataliya Pylypiv
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Alessandra Parlanti
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Simona Storti
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Umberto Paradossi
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Sergio Berti
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
12
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
13
|
Karam ZM, Yari A, Najmadini A, Khorasani NN, Attari R, Jafarinejad-Farsangi S, Karam MAM, Najafipour H, Saeidi K. Association of the ESR1 (rs9340799), OLR1 (rs3736234), LIPC (rs2070895), VDR (rs2228570), and CETP (rs708272) Polymorphisms With Risk of Coronary Artery Disease in Iranian Patients. J Clin Lab Anal 2024; 38:e25026. [PMID: 38506378 PMCID: PMC10997818 DOI: 10.1002/jcla.25026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a devastating illness and a leading cause of death worldwide, primarily caused by atherosclerosis resulting from a genetic-environmental interaction. This study aimed to investigate the relationship between the ESR1 (rs9340799), OLR1 (rs3736234), LIPC (rs2070895), VDR (rs2228570), and CETP (rs708272) polymorphisms, lipid profile parameters, and CAD risk in a southeast Iranian population. METHODS A total of 400 subjects (200 CAD patients with hyperlipidemia and 200 healthy controls) were enrolled in this case-control study. Five selected polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. RESULTS For all single nucleotide polymorphisms (SNPs), the population under study was in the Hardy-Weinberg equilibrium. The T-risk allele frequency of rs2228570 was associated with an increased risk of CAD. The TT and CT genotypes of rs2228570 had also been associated with the risk of CAD. Additionally, the TT genotype was associated with higher serum low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) levels. The GG genotype of the rs3736234 was associated with higher body mass index (BMI) and triglyceride (TG) levels, and the AA genotype of the rs708272 was associated with higher HDL-c levels. Based on these findings, we propose that the VDR (rs2228570) polymorphism was associated with serum HDL-c and LDL-c levels and may serve as potential risk factors for CAD within the Iranian population. Moreover, rs3736234 and rs708272 influence the concentrations of TG and HDL-c, respectively. CONCLUSION These findings provided insights into the complex interplay between genetic variations, cardiovascular risk, and lipid metabolism.
Collapse
Affiliation(s)
- Zahra Miri Karam
- Department of Medical Genetics, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Yari
- Department of Medical Genetics, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefeh Najmadini
- Department of Medical Immunology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Norouzi Khorasani
- Department of Biology, Faculty of Life Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Rezvan Attari
- Department of Biology, University of Guilan, Rasht, Iran
| | | | - Mohammad Ali Miri Karam
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kolsoum Saeidi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Fernandes TH, Bell V. The imprecision of micronutrient requirement values: the example of vitamin D. J Food Sci 2024; 89:51-63. [PMID: 38126105 DOI: 10.1111/1750-3841.16889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Food, not nutrients, is the fundamental unit in nutrition. Nutrient requirement values and recommended daily intakes have long been determined and organized in tables by several regulators. These figures, however, overlook the complexity of mixing different foods in a diet and the mediation by human gut microbiota on digestion, metabolism, and health. The microbiome molecular mechanisms and its potential influence on nutrient requirements are far from clear. Guidelines should depend on the sort of intake, along with the dietary habits, rather than focusing on single nutrients. Despite many decades of attempts to investigate the proximate nutrient composition of foods consumed by different world populations, there are still neither standardization of food composition databases nor harmonized dietary intake methods of assessment of nutrients. No all-inclusive attempt was yet made to emphasize the requirements of the various micronutrients, phytonutrients, and non-nutrients on gut microbiota and vice versa, and thereafter reflected into dietary guidelines. New multifaceted methods have been advanced to reevaluate the way nutrients and nutrient requirements are assessed within the intricate biological systems. Our main goal here was to enhance the fact that existing food guidelines hold inherent strengths and limitations but fail, in many aspects, namely, in not taking into account essential geographical, ethnic and cultural differences, and the different stages of life, infant nutrition, and the microbiota impact on several micronutrient requirements. Vitamin D is given as an illustration on present inaccuracy of its requirements. Defining dietary reference intakes is therefore an ongoing process specific for each population.
Collapse
Affiliation(s)
| | - Victoria Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Coimbra, Portugal
| |
Collapse
|
15
|
Popa AD, Niță O, Caba L, Gherasim A, Graur M, Mihalache L, Arhire LI. From the Sun to the Cell: Examining Obesity through the Lens of Vitamin D and Inflammation. Metabolites 2023; 14:4. [PMID: 38276294 PMCID: PMC10820276 DOI: 10.3390/metabo14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Obesity affects more than one billion people worldwide and often leads to cardiometabolic chronic comorbidities. It induces senescence-related alterations in adipose tissue, and senescence is closely linked to obesity. Fully elucidating the pathways through which vitamin D exerts anti-inflammatory effects may improve our understanding of local adipose tissue inflammation and the pathogenesis of metabolic disorders. In this narrative review, we compiled and analyzed the literature from diverse academic sources, focusing on recent developments to provide a comprehensive overview of the effect of vitamin D on inflammation associated with obesity and senescence. The article reveals that the activation of the NF-κB (nuclear factor kappa B subunit 1) and NLRP3 inflammasome (nucleotide-binding domain, leucine-rich-containing, pyrin domain-containing-3) pathways through the toll-like receptors, which increases oxidative stress and cytokine release, is a common mechanism underlying inflammation associated with obesity and senescence, and it discusses the potential beneficial effect of vitamin D in alleviating the development of subclinical inflammation. Investigating the main target cells and pathways of vitamin D action in adipose tissue could help uncover complex mechanisms of obesity and cellular senescence. This review summarizes significant findings related to opportunities for improving metabolic health.
Collapse
Affiliation(s)
- Alina Delia Popa
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Otilia Niță
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lavinia Caba
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Andreea Gherasim
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Mariana Graur
- Faculty of Medicine and Biological Sciences, University “Ștefan cel Mare” of Suceava, 720229 Suceava, Romania;
| | - Laura Mihalache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lidia Iuliana Arhire
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| |
Collapse
|
16
|
Fenizia S, Gaggini M, Vassalle C. Interplay between Vitamin D and Sphingolipids in Cardiometabolic Diseases. Int J Mol Sci 2023; 24:17123. [PMID: 38069444 PMCID: PMC10706901 DOI: 10.3390/ijms242317123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Sphingolipids (SLs) are structural, bioactive molecules with several key cellular roles, whereas 1,25-dihydroxyvitamin D (1,25(OH)D), the active form of vitamin D, is considered the major regulator of calcium homeostasis, although it also exerts other extraskeletal effects. Many studies reported the physiological connection between vitamin D and SLs, highlighting not only the effects of vitamin D on SL metabolism and signaling but also the influence of SLs on vitamin D levels and function, thus strongly suggesting a crosstalk between these molecules. After a brief description of 1,25(OH)D and SL metabolism, this review aims to discuss the preclinical and clinical evidence on the crosstalk between SLs and 1,25(OH)D, with a special focus on cardiometabolic diseases.
Collapse
Affiliation(s)
- Simona Fenizia
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Corso Trieste 15/A, I-28100 Novara, Italy;
- Department of Translational Medicine, University of Piemonte Orientale, Corso Trieste 15/A, I-28100 Novara, Italy
| | - Melania Gaggini
- Istituto di Fisiologia Clinica, Italian National Research Council, Via Moruzzi 1, I-56124 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
17
|
Wang H, Zhang F, Li B, Fu M, Shan X, Ma Y. Three-stage pattern of rapid increase, plateau, and subsequent decline in vitamin D concentration during pregnancy among Chinese women: a large-scale survey. Front Nutr 2023; 10:1238389. [PMID: 37908304 PMCID: PMC10613652 DOI: 10.3389/fnut.2023.1238389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Background There is an incomplete understanding of fluctuations in vitamin D (VitD) concentration during pregnancy among Chinese women. Furthermore, previous research has yielded conflicting results in this area. This study aims to investigate the changes in VitD status and deficiency in Chinese pregnant women across various age groups, gestational weeks, and as well as seasonal variations through conducting a large-scale survey. Methods A toal of 11,220 Chinese pregnant women between 2021 and April 2023 were included in this study. Generalized additive models (GAM), stratified analysis, and restricted cubic splines (RCS) were used to analyze changes in VitD status and deficiency risk during pregnancy. Results Of the participants, 45.2% had deficient concentration of 25-hydroxyvitamin D. VitD concentration and deficiency rate do not show linear changes with age and gestational weeks. With increasing gestational weeks, VitD concentration rapidly increased in women with gestational age < 20 weeks, remained stable between 20 and 30 weeks, and decreased beyond 30 weeks; however, the odds of VitD deficiency showed three different patterns: a rapid decline, a stable period, and a mild increase, respectively. Based on the stratified regression analysis, VitD deficiency odds increased by 16% with each additional week of gestation in pregnant women with gestational age > 30 weeks, OR = 1.16 (1.10-1.22), p < 0.001. Interaction effect analysis indicated that pregnant women over 35 years with gestational weeks between 20 and 30 had the lowest odds of VitD deficiency. Conclusion VitD concentration undergo three phases during pregnancy: rapid increase, plateau, and subsequent decrease. VitD deficiency odds was highest in pregnant women under 25 with gestational ages <20 and lowest in pregnant women over 35 with gestational ages between 20 and 30. The odds of deficiency increase slightly in pregnant women with gestational ages beyond 30 weeks, indicating that they may require additional VitD supplementation.
Collapse
Affiliation(s)
- Huabin Wang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Feifang Zhang
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Bingxian Li
- Taizhou Medical College, Taizhou, Zhejiang, China
| | - Miao Fu
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaoyun Shan
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yongjun Ma
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
18
|
Sangha A, Quon M, Pfeffer G, Orton SM. The Role of Vitamin D in Neuroprotection in Multiple Sclerosis: An Update. Nutrients 2023; 15:2978. [PMID: 37447304 DOI: 10.3390/nu15132978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a complex neurological condition that involves both inflammatory demyelinating and neurodegenerative components. MS research and treatments have traditionally focused on immunomodulation, with less investigation of neuroprotection, and this holds true for the role of vitamin D in MS. Researchers have already established that vitamin D plays an anti-inflammatory role in modulating the immune system in MS. More recently, researchers have begun investigating the potential neuroprotective role of vitamin D in MS. The active form of vitamin D, 1,25(OH)2D3, has a range of neuroprotective properties, which may be important in remyelination and/or the prevention of demyelination. The most notable finding relevant to MS is that 1,25(OH)2D3 promotes stem cell proliferation and drives the differentiation of neural stem cells into oligodendrocytes, which carry out remyelination. In addition, 1,25(OH)2D3 counteracts neurodegeneration and oxidative stress by suppressing the activation of reactive astrocytes and M1 microglia. 1,25(OH)2D3 also promotes the expression of various neuroprotective factors, including neurotrophins and antioxidant enzymes. 1,25(OH)2D3 decreases blood-brain barrier permeability, reducing leukocyte recruitment into the central nervous system. These neuroprotective effects, stimulated by 1,25(OH)2D3, all enhance neuronal survival. This review summarizes and connects the current evidence supporting the vitamin D-mediated mechanisms of action for neuroprotection in MS.
Collapse
Affiliation(s)
- Amarpreet Sangha
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Michaela Quon
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarah-Michelle Orton
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| |
Collapse
|