1
|
Seo MJ. Fermented Foods and Food Microorganisms: Antioxidant Benefits and Biotechnological Advancements. Antioxidants (Basel) 2024; 13:1120. [PMID: 39334779 PMCID: PMC11428904 DOI: 10.3390/antiox13091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Fermented foods have been a part of human civilization since ancient times, offering enhanced flavors, extended shelf-life, and improved nutritional value through the action of microorganisms [...].
Collapse
Affiliation(s)
- Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
Calderón-Chiu C, Ragazzo-Sánchez JA, Ordaz-Hernández A, Herrera-Martínez M. Jackfruit Leaf Protein Hydrolysates Obtained by Enzymatic Hydrolysis of Leaf Protein Concentrate with Pepsin and Pancreatin: Molecular Weight, Cytotoxicity, Antiproliferative Activity, and Oxidative Stress. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:685-692. [PMID: 38985367 DOI: 10.1007/s11130-024-01203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Jackfruit leaf protein hydrolysates obtained from the enzymatic hydrolysis of leaf protein concentrate with gastrointestinal enzymes have shown good techno-functional properties and high antioxidant capacity. However, molecular weight, antiproliferative activity, cytotoxicity and the ability to reduce reactive oxygen species (ROS) are still unknown. Therefore, this study aimed to evaluate the effect of jackfruit leaf protein hydrolysates obtained by enzymatic hydrolysis with pepsin and pancreatin at different hydrolysis times (30-240 min) on molecular weights, cytotoxicity, antiproliferation of cancer cells, and the reduction of reactive oxygen species in H2O2-induced HaCaT cells. The electrophoretic profile indicated that H-Pep contains peptides with molecular weights between 25 - 20 kDa. Meanwhile, H-Pan is composed of molecular weight products between 25 - 20 kDa and < 20 kDa. H-Pan and H-Pep (125-500 µg/mL) did not show significant cytotoxicity on HaCaT (human keratinocytes) and J774A.1 (murine macrophage cells). Antiproliferative activity was achieved in human cervical, ovarian, and liver cancer cells. H-Pan-240 min (1000 µg/mL) reduced the cell viability of cervical cancer cells by 23% while H-Pan-60 min significantly reduced cell viability of ovarian and liver cancer cells by 14.5 (500 µg/mL) and 17% (1000 µg/mL), respectively (P < 0.05). The protective effect against oxidative stress on H2O2-stressed HaCaT cells was obtained with H-Pep-60 min, which reduced 25% of ROS at 250 µg/mL (P < 0.05). The findings demonstrate the safe use of green biomass as a source of plant protein hydrolysates.
Collapse
Affiliation(s)
- Carolina Calderón-Chiu
- Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán - San Antonio Nanahuatipán Km 1.7 s/n., Paraje Titlacuatitla, Teotitlán de Flores Magón, Oaxaca, 68540, México
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Tepic - Avenida Tecnológico #2595, Colonia Lagos del Country, Tepic, Nayarit, 63175, México
| | - Armando Ordaz-Hernández
- Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán - San Antonio Nanahuatipán Km 1.7 s/n., Paraje Titlacuatitla, Teotitlán de Flores Magón, Oaxaca, 68540, México
| | - Mayra Herrera-Martínez
- Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán - San Antonio Nanahuatipán Km 1.7 s/n., Paraje Titlacuatitla, Teotitlán de Flores Magón, Oaxaca, 68540, México.
| |
Collapse
|
3
|
Stavropoulou LS, Efthimiou I, Giova L, Manoli C, Sinou PS, Zografidis A, Lamari FN, Vlastos D, Dailianis S, Antonopoulou M. Phytochemical Profile and Evaluation of the Antioxidant, Cyto-Genotoxic, and Antigenotoxic Potential of Salvia verticillata Hydromethanolic Extract. PLANTS (BASEL, SWITZERLAND) 2024; 13:731. [PMID: 38475577 DOI: 10.3390/plants13050731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
This study comprises the phytochemical characterization, the evaluation of the total phenolic content (TPC) and antioxidant activity (AA), and the investigation of the cyto-genotoxic and antigenotoxic potential of hydromethanolic extract derived from Salvia verticillata L. leaves. HPLC-DAD-ESI-MS and HPLC-DAD were used for the characterization of the extract and determination of the major ingredients. Afterwards, the TPC and AA were determined. The cytotoxic and genotoxic effect of the extract on cultured human lymphocytes at concentrations of 10, 25, and 50 μg mL-1 was investigated via the Cytokinesis Block MicroNucleus (CBMN) assay. Moreover, its antigenotoxic potential against the mutagenic agent mitomycin C (MMC) was assessed using the same assay. The hydromethanolic extract comprises numerous metabolites, with rosmarinic acid being the major compound. It had a high value of TPC and exerted significant AA as shown by the results of the Ferric Reducing Antioxidant Power (FRAP) and Radical Scavenging Activity by DPPH• assays. A dose-dependent cytotoxic potential was recorded, with the highest dose (50 μg mL-1) exhibiting statistically significant cytotoxicity. None of the tested concentrations induced significant micronuclei (MN) frequencies, indicating a lack of genotoxicity. All tested concentrations reduced the MMC-mediated genotoxic effects, with the two lowest showing statistically significant antigenotoxic potential.
Collapse
Affiliation(s)
- Lamprini S Stavropoulou
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | - Ioanna Efthimiou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Lambrini Giova
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Chrysoula Manoli
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Paraskevi S Sinou
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | - Aris Zografidis
- Laboratory of Botany, Department of Biology, University of Patras, GR-26504 Patras, Greece
| | - Fotini N Lamari
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece
| |
Collapse
|
4
|
Jeong S, Jung JH, Jung KW, Ryu S, Lim S. From microbes to molecules: a review of microbial-driven antioxidant peptide generation. World J Microbiol Biotechnol 2023; 40:29. [PMID: 38057638 DOI: 10.1007/s11274-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|