1
|
Yuan Z, Li J, He K, Sun Z, Luo G, Liu H, Dong J, Zhou C, Cui H, Fan C. Endogenous hydrogen sulfide accelerated trauma-induced heterotopic ossification through the Ca 2+/ERK pathway-enhanced aberrant osteogenic activity. Redox Biol 2024; 75:103265. [PMID: 39003920 PMCID: PMC11298937 DOI: 10.1016/j.redox.2024.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Unveiling of the mechanism involved in the occurrence and development of trauma-induced heterotopic ossification (tHO) is highly demanding due to current ineffective clinical treatment for it. Previous studies proposed that hydrogen sulfide (H2S) was vital for fate determination of stem cells, suggesting a potential role in the regulation of tHO development. In the current study, We found that expression of metabolic enzyme within sulfur conversion pathway was enhanced after tendon injury, leading to H2S accumulation within the tHO region. Increased production of endogenous H2S was shown to promote aberrant osteogenic activity of tendon-derived stem cells (TDSCs), which accelerated tHO formation. The inhibition of metabolic enzyme of H2S production or directly absorption of H2S could abolished osteogenic induction of TDSCs and the formation of tHO. Mechanistically, through RNA sequencing combined with rescue experiments, we demonstrated that activation of Ca2+/ERK pathway was the downstream molecular event of H2S-induced osteogenic commitment of TDSCs and tHO. For treatment strategy exploration, zine oxide nanoparticles (ZnO) as an effective H2S elimination material was validated to ideally halt the tHO formation in this study. Furthermore, in terms of chirality of nanoparticles, D-ZnO or L-ZnO nanoparticles showed superiority over R-ZnO nanoparticles in both clearing of H2S and inhibition of tHO. Our study not only revealed the mechanism of tHO through the endogenous gas signaling event from a new perspective, but also presented a applicable platform for elimination of the inordinate gas production, thus aiding the development of clinical treatment for tHO.
Collapse
Affiliation(s)
- Zhengqiang Yuan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Juehong Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kuangyu He
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ziyang Sun
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Gang Luo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hang Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinlei Dong
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Chao Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haomin Cui
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Salehiyeh S, Faiz AF, Manzourolhojeh M, Bagheri AM, Lorian K. The functions of hydrogen sulfide on the urogenital system of both males and females: from inception to the present. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6391-6415. [PMID: 38689070 DOI: 10.1007/s00210-024-03086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Hydrogen sulfide (H2S) is known as a chemical gas in nature with both enzymatic and non-enzymatic biosynthesis in different human organs. A couple of studies have demonstrated the function of H2S in regulating the homeostasis of the human body. Additionally, they have shown its synthesis, measurement, chemistry, protective effects, and interaction in various aspects of scientific evidence. Furthermore, many researches have demonstrated the beneficial impacts of H2S on genital organs and systems. According to various studies, it is recognized that H2S-producing enzymes and the endogenous production of H2S are expressed in male and female reproductive systems in different mammalian species. The main goal of this comprehensive review is to assess the potential therapeutic impacts of this gasotransmitter in the male and female urogenital system and find underlying mechanisms of this agent. This narrative review investigated the articles that were published from the 1970s to 2022. The review's primary focus is the impacts of H2S on the male and female urogenital system. Medline, CINAHL, PubMed, and Google scholar databases were searched. Keywords used in this review were "Hydrogen sulfide," "H2S," "urogenital system," and "urogenital tract". Numerous studies have demonstrated the therapeutic and protective effects of sodium hydrosulfide (Na-HS) as an H2S donor on male and female infertility disorders. Furthermore, it has been observed that H2S plays a significant role in improving different diseases such as ameliorating sperm parameters. The specific localization of H2S enzymes in the urogenital system provides an excellent opportunity to comprehend its function and role in various disorders related to this system. It is noteworthy that H2S has been demonstrated to be produced in endocrine organs and exhibit diverse activities. Moreover, it is important to recognize that alterations in H2S biosynthesis are closely linked to endocrine disorders. Therefore, hormones can be pivotal in regulating H2S production, and H2S synthesis pathways may aid in establishing novel therapeutic strategies. H2S possesses pharmacological effects on essential disorders, such as anti-inflammation, anti-apoptosis, and anti-oxidant activities, which render it a valuable therapeutic agent for human urogenital disease. Furthermore, this agent shows promise in ameliorating the detrimental effects of various male and female diseases. Despite the limited clinical research, studies have demonstrated that applying H2S as an anti-oxidant source could ameliorate adverse effects of different conditions in the urogenital system. More clinical studies are required to confirm the role of this component in clinical settings.
Collapse
Affiliation(s)
- Sajad Salehiyeh
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Faisal Faiz
- Department of Paraclinic, School of Medicine, Herat University, Herat, Afghanistan
| | - Mohammad Manzourolhojeh
- Department of Medical Laboratory Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Amir Mohammad Bagheri
- Department of Medical Genetics, Shahid Sadoughi university of Medical Sciences, Yazd, Iran
| | - Keivan Lorian
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
3
|
Schertel Cassiano L, Jensen AB, Pajaniaye J, Lopez R, Fjaeldstad AW, Nascimento GG. Periodontitis is associated with impaired olfactory function: A clinical study. J Periodontal Res 2024. [PMID: 38888002 DOI: 10.1111/jre.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
AIM To explore the association between periodontitis and olfactory disorders. METHODS Clinical data were collected from 198 individuals between the ages of 18 and 60 years living in Denmark. The exposure was periodontitis, and the outcome was olfactory function (Threshold, Discrimination, Identification - TDI score), both measured clinically. Covariates included sex, age, education level, income, usage of nasal spray, tongue coating, halitosis, xerostomia, smoking, and history of COVID-19. Structural equation modeling was used to estimate the association between periodontitis and olfactory function. Periodontitis was defined using the AAP/EFP classification and dichotomized into "no" (healthy subjects) and "yes" (Stages I, II, and III). Olfactory function was treated as a one-factor latent variable, including the different olfactory scores. In addition, extra models were performed considering each olfactory component as a separate outcome and the TDI Global Score. RESULTS The results showed that periodontitis was associated with a lower olfactory function [standardized coefficient (SC) -0.264, 95% CI -0.401, -0.118]. Additionally, periodontitis was also associated with a lower olfactory Threshold (odorant concentration required for detection) (SC -0.207, 95% CI -0.325, -0.089), Discrimination (ability to discriminate between odorants) (SC -0.149, 95% CI -0.270, -0.027), Identification (ability to identify odorants) scores (SC -0.161, 95% CI -0.277, -0.045), and TDI Global Score (SC -0.234, 95% CI -0.370, -0.099). CONCLUSIONS This study suggests that periodontitis is associated with olfactory impairment.
Collapse
Affiliation(s)
- Luisa Schertel Cassiano
- Section for Oral Ecology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Anne Birkeholm Jensen
- Section for Oral Ecology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Julie Pajaniaye
- Section for Oral Ecology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Rodrigo Lopez
- Center for Translational Oral Research - Periodontology, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Gustavo G Nascimento
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore City, Singapore
- National Dental Research Institute Singapore, National Dental Centre, Singapore City, Singapore
| |
Collapse
|
4
|
Cerkezi S, Nakova M, Gorgoski I, Ferati K, Bexheti-Ferati A, Palermo A, Inchingolo AD, Ferrante L, Inchingolo AM, Inchingolo F, Dipalma G. The Role of Sulfhydryl (Thiols) Groups in Oral and Periodontal Diseases. Biomedicines 2024; 12:882. [PMID: 38672236 PMCID: PMC11048028 DOI: 10.3390/biomedicines12040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
AIM The sulfhydryl (thiols) group of glutathione plays an important role in the neutralization of foreign organic compounds and the reduction in peroxides. The purpose of the study is to evaluate the concentration of sulfhydryl groups in the gingival tissue of healthy individuals and those with gingivitis or periodontitis, and to examine the differences between these groups. MATERIAL AND METHODS To assess the concentration of sulfhydryl groups (thiols) in the gingival tissue of healthy individuals and those with gingivitis or periodontitis, we used spectrophotometric analysis using dithionitrobenzoate (DTNB) as a reagent to measure the accessible sulfhydryl groups present in gingival tissue proteins. The sample was divided into three distinct groups: individuals with periodontal health, gingivitis, and periodontitis, and different indices were used to assess the periodontal status of the participants. Next, a statistical analysis was conducted to compare the concentrations of sulfhydryl groups among the different groups of patients. CONCLUSIONS The results of this study showed significantly decreased levels of sulfhydryl (thiols) groups in gingival tissue from patients with gingivitis and periodontitis, compared with healthy people (control group). These results confirm the role of sulfhydryl (thiols) groups in defense against free radicals. They share a significant role in detoxification, signal transduction, apoptosis, and various other functions at the molecular level.
Collapse
Affiliation(s)
- Sabetim Cerkezi
- Orthodontic Department, Dentristy School, Medical Science Faculty, State University of Tetova, 1220 Tetova, North Macedonia;
| | - Marija Nakova
- Periodontology Department, Dentistry School, Medical Science Faculty, State University of Tetova, 1220 Tetova, North Macedonia;
| | - Icko Gorgoski
- Faculty of Natural Sciences and Mathematics, University St. Cyril and Methodius, 1000 Skopje, North Macedonia;
| | - Kenan Ferati
- Faculty of Medicine, State University of Tetova, 1220 Tetovo, North Macedonia; (K.F.); (A.B.-F.)
| | - Arberesha Bexheti-Ferati
- Faculty of Medicine, State University of Tetova, 1220 Tetovo, North Macedonia; (K.F.); (A.B.-F.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| |
Collapse
|
5
|
Schertel Cassiano L, Ribeiro AP, Peres MA, Lopez R, Fjældstad A, Marchini L, Nascimento GG. Self-reported periodontitis association with impaired smell and taste: A multicenter survey. Oral Dis 2024; 30:1516-1524. [PMID: 37114436 DOI: 10.1111/odi.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVES To investigate the association between self-reported periodontitis and the senses of taste and smell among employees of one Danish and two American universities. MATERIALS AND METHODS Data were collected through a digital survey. A total of 1239 individuals from Aarhus University - Denmark, the University of Iowa, and the University of Florida - USA were included. Self-reported periodontitis was the exposure. The perceived senses of taste and smell were the outcomes and were measured through a visual analog scale (VAS). Self-perceived halitosis was the mediator. Confounders were age, sex, income, education, xerostomia, COVID-19, smoking, body mass index, and diabetes. The total effect was decomposed into direct and indirect using a counterfactual approach. RESULTS The total effect of periodontitis on an impaired sense of taste was OR 1.56 (95% CI [1.02, 2.09]), of which 23% was mediated by halitosis (OR 1.13; 95% CI [1.03, 1.22]). Additionally, individuals with self-reported periodontitis had a 53% higher chance of having impaired smell (OR 1.53; 95% CI [1.00, 2.04]), with halitosis mediating 21% of the total effect (OR 1.11; 95% CI [1.02, 1.20]). CONCLUSION Our findings suggest that periodontitis is associated with distorted senses of taste and smell. Additionally, this association appears to be mediated by halitosis.
Collapse
Affiliation(s)
- Luisa Schertel Cassiano
- Section for Periodontology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Ana Paula Ribeiro
- Department of Restorative Dentistry, College of Dentistry, University of Florida, Florida, Gainesville, USA
| | - Marco Anselmo Peres
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore City, Singapore
- Oral Health ACP, Duke-NUS Medical School, Singapore City, Singapore
| | - Rodrigo Lopez
- School of Dentistry, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | | | - Leonardo Marchini
- Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Ohio, Cleveland, USA
| | - Gustavo G Nascimento
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore City, Singapore
- Oral Health ACP, Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
6
|
Zou Y, Yuan Y, Zhou Q, Yue Z, Liu J, Fan L, Xu H, Xin L. The Role of Methionine Restriction in Gastric Cancer: A Summary of Mechanisms and a Discussion on Tumor Heterogeneity. Biomolecules 2024; 14:161. [PMID: 38397398 PMCID: PMC10887009 DOI: 10.3390/biom14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer is ranked as the fifth most prevalent cancer globally and has long been a topic of passionate discussion among numerous individuals. However, the incidence of gastric cancer in society has not decreased, but instead has shown a gradual increase in recent years. For more than a decade, the treatment effect of gastric cancer has not been significantly improved. This is attributed to the heterogeneity of cancer, which makes popular targeted therapies ineffective. Methionine is an essential amino acid, and many studies have shown that it is involved in the development of gastric cancer. Our study aimed to review the literature on methionine and gastric cancer, describing its mechanism of action to show that tumor heterogeneity in gastric cancer does not hinder the effectiveness of methionine-restricted therapies. This research also aimed to provide insight into the inhibition of gastric cancer through metabolic reprogramming with methionine-restricted therapies, thereby demonstrating their potential as adjuvant treatments for gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang 330006, China; (Y.Z.); (Y.Y.); (Q.Z.); (Z.Y.); (J.L.); (L.F.); (H.X.)
| |
Collapse
|
7
|
Hamidizad Z, Kadkhodaee M, Kianian F, Ranjbaran M, Seifi B. The effects of CORM3 or NaHS on the oxidative stress caused by chronic kidney disease in rats: potential interaction between CO and H 2S signaling pathway. Metab Brain Dis 2023; 38:2653-2664. [PMID: 37695421 DOI: 10.1007/s11011-023-01264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/16/2023] [Indexed: 09/12/2023]
Abstract
Neurotoxicity is implicated as a severe complication of chronic kidney disease (CKD). Accumulation of urea and other toxic compounds leads to oxidative stress, inflammation and destruction of the blood-brain barrier. Carbon monoxide (CO) and hydrogen sulfide (H2S) have been shown to have anti-inflammatory, anti-apoptotic, and anti-proliferative properties. The aims of the present study were evaluated the protective effects of CO-releasing molecule (CORM3) and H2S donor (NaHS) on oxidative stress and neuronal death induced by CKD in the hippocampus and prefrontal cortex by considering interaction between CO and H2S on CBS expression. CORM3 or NaHS significantly compensated deficits in the antioxidant defense mechanisms, suppressed lipid peroxidation and reduced neuronal death in hippocampus and prefrontal cortex and improvement the markers of renal injury that induced by CKD. In addition, CORM3 or NaHS significantly improved CBS expression which were reduced by CKD. However, improving effects of CORM3 on antioxidant defense mechanisms, lipid peroxidation, neuronal death, renal injury and CBS expression were prevented by amino-oxy acetic acid (AOAA) (CBS inhibitor) and reciprocally improving effects of NaHS on all above indices were prevented by zinc protoporphyrin IX (Znpp) (HO-1 inhibitor). In conclusion, this study demonstrated that formation of CO and H2S were interdependently improved CKD-induced oxidative stress and neuronal death, which is may be through increased expression of CBS.
Collapse
Affiliation(s)
- Zeinab Hamidizad
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Kianian
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
9
|
The tongue biofilm metatranscriptome identifies metabolic pathways associated with the presence or absence of halitosis. NPJ Biofilms Microbiomes 2022; 8:100. [PMID: 36535943 PMCID: PMC9763428 DOI: 10.1038/s41522-022-00364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Intra-oral halitosis usually results from the production of volatile sulfur compounds, such as methyl mercaptan and hydrogen sulfide, by the tongue microbiota. There are currently no reports on the microbial gene-expression profiles of the tongue microbiota in halitosis. In this study, we performed RNAseq of tongue coating samples from individuals with and without halitosis. The activity of Streptococcus (including S. parasanguinis), Veillonella (including V. dispar) and Rothia (including R. mucilaginosa) was associated with halitosis-free individuals while Prevotella (including P. shahi), Fusobacterium (including F. nucleatum) and Leptotrichia were associated with halitosis. Interestingly, the metatranscriptome of patients that only had halitosis levels of methyl mercaptan was similar to that of halitosis-free individuals. Finally, gene expression profiles showed a significant over-expression of genes involved in L-cysteine and L-homocysteine synthesis, as well as nitrate reduction genes, in halitosis-free individuals and an over-expression of genes responsible for cysteine degradation into hydrogen sulfide in halitosis patients.
Collapse
|
10
|
Iliopoulos JM, Layrolle P, Apatzidou DA. Microbial-stem cell interactions in periodontal disease. J Med Microbiol 2022; 71. [PMID: 35451943 DOI: 10.1099/jmm.0.001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Periodontitis is initiated by hyper-inflammatory responses in the periodontal tissues that generate dysbiotic ecological changes within the microbial communities. As a result, supportive tissues of the tooth are damaged and periodontal attachment is lost. Gingival recession, formation of periodontal pockets with the presence of bleeding, and often suppuration and/or tooth mobility are evident upon clinical examination. These changes may ultimately lead to tooth loss. Mesenchymal stem cells (MSCs) are implicated in controlling periodontal disease progression and have been shown to play a key role in periodontal tissue homeostasis and regeneration. Evidence shows that MSCs interact with subgingival microorganisms and their by-products and modulate the activity of immune cells by either paracrine mechanisms or direct cell-to-cell contact. The aim of this review is to reveal the interactions that take place between microbes and in particular periodontal pathogens and MSCs in order to understand the factors and mechanisms that modulate the regenerative capacity of periodontal tissues and the ability of the host to defend against putative pathogens. The clinical implications of these interactions in terms of anti-inflammatory and paracrine responses of MSCs, anti-microbial properties and alterations in function including their regenerative potential are critically discussed based on literature findings. In addition, future directions to design periodontal research models and study ex vivo the microbial-stem cell interactions are introduced.
Collapse
Affiliation(s)
- Jordan M Iliopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Pierre Layrolle
- INSERM, ToNIC, Pavillon Baudot, CHU Purpan, University of Toulouse, Toulouse, UMR 1214, France
| | - Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
11
|
Lu X, Ding Y, Liu H, Sun M, Chen C, Yang Y, Wang H. The Role of Hydrogen Sulfide Regulation of Autophagy in Liver Disorders. Int J Mol Sci 2022; 23:ijms23074035. [PMID: 35409395 PMCID: PMC8999478 DOI: 10.3390/ijms23074035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a complex process of degradation of senescent or dysfunctional organelles in cells. Dysfunctional autophagy is associated with many diseases such as cancers, immune dysfunction, and aging. Hydrogen sulfide (H2S) is considered to be the third gas signal molecule after nitrous oxide and carbon monoxide. In recent years, H2S has been found to have a variety of important biological functions, and plays an important role in a variety of physiological and pathological processes. In this review, we review the recent role and mechanism of H2S in regulating autophagy in liver disorders, in order to provide a basis for further research in the future.
Collapse
Affiliation(s)
- Xueqin Lu
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng 475004, China; (X.L.); (Y.D.); (C.C.)
| | - Yueming Ding
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng 475004, China; (X.L.); (Y.D.); (C.C.)
| | - Huiyang Liu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (H.L.); (M.S.); (Y.Y.)
| | - Mengyao Sun
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (H.L.); (M.S.); (Y.Y.)
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng 475004, China; (X.L.); (Y.D.); (C.C.)
| | - Yihan Yang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (H.L.); (M.S.); (Y.Y.)
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (H.L.); (M.S.); (Y.Y.)
- Correspondence:
| |
Collapse
|
12
|
Srivastava A, Mishra S, Verma D. Characterization of Oral Bacterial Composition of Adult Smokeless Tobacco Users from Healthy Indians Using 16S rDNA Analysis. MICROBIAL ECOLOGY 2021; 82:1061-1073. [PMID: 33634334 DOI: 10.1007/s00248-021-01711-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/03/2021] [Indexed: 05/25/2023]
Abstract
The present investigation is aiming to report the oral bacterial composition of smokeless tobacco (SLT) users and to determine the influence of SLT products on the healthy Indian population. With the aid of the V3 hypervariable region of the 16S rRNA gene, a total of 8,080,889 high-quality reads were clustered into 15 phyla and 180 genera in the oral cavity of the SLT users. Comparative analysis revealed a more diverse microbiome where two phyla and sixteen genera were significantly different among the SLT users as compared to the control group (p-value < 0.05). The prevalence of Fusobacteria-, Porphyromonas-, Desulfobulbus-, Enterococcus-, and Parvimonas-like genera among SLT users indicates altered bacterial communities among SLT users. Besides, the depletion of health-compatible bacteria such as Lactobacillus and Haemophilus also suggests poor oral health. Here, the majority of the altered genera belong to Gram-negative anaerobes that have been reported for assisting biofilm formation that leads in the progression of several oral diseases. The PICRUSt analysis further supports the hypothesis where a significant increase in the count of the genes involved in the metabolism of nitrogen, amino acids, and nicotinate/nicotinamide was observed among tobacco chewers. Moreover, this study has a high significance in Indian prospects where the SLT consumers are prevalent but we are deficient in information on their oral microbiome.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - SukhDev Mishra
- Department of Bio-Statistics and Data Management, ICMR-National Institute of Occupational Health, Ahmedabad, India
| | - Digvijay Verma
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| |
Collapse
|
13
|
Hu L, Guo J, Zhou L, Zhu S, Wang C, Liu J, Hu S, Yang M, Lin C. Hydrogen Sulfide Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Apoptosis and Affects Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8868564. [PMID: 33488939 PMCID: PMC7790554 DOI: 10.1155/2020/8868564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) is a major cause of visual impairment and blindness among the elderly. AMD is characterized by retinal pigment epithelial (RPE) cell dysfunction. However, the pathogenesis of AMD is still unclear, and there is currently no effective treatment. Accumulated evidence indicates that oxidative stress and autophagy play a crucial role in the development of AMD. H2S is an antioxidant that can directly remove intracellular superoxide anions and hydrogen peroxide. The purpose of this study is to investigate the antioxidative effect of H2S in RPE cells and its role in autophagy. The results show that exogenous H2S (NaHS) pretreatment effectively reduces H2O2-induced oxidative stress, oxidative damage, apoptosis, and inflammation in ARPE-19 cells. NaHS pretreatment also decreased autophagy levels raised by H2O2, increased cell viability, and ameliorated cell morphological damage. Interestingly, the suppression of autophagy by its inhibitor 3-MA showed an increase of cell viability, amelioration of morphology, and a decrease of apoptosis. In summary, oxidative stress causes ARPE-19 cell injury by inducing cell autophagy. However exogenous H2S is shown to attenuate ARPE-19 cell injury, decrease apoptosis, and reduce the occurrence of autophagy-mediated by oxidative stress. These findings suggest that autophagy might play a crucial role in the development of AMD, and exogenous H2S has a potential value in the treatment of AMD.
Collapse
Affiliation(s)
- Liming Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jia Guo
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Zhou
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiawei Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shanshan Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mulin Yang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Alizadehgharib S, Östberg AK, Dahlstrand Rudin A, Dahlgren U, Christenson K. Immunological response of human leucocytes after exposure to lipopolysaccharides from Porphyromonas gingivalis. Clin Exp Dent Res 2020; 7:531-538. [PMID: 33377284 PMCID: PMC8404501 DOI: 10.1002/cre2.388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a gram-negative bacterium and an important etiologic agent of periodontitis. P. gingivalis releases outer membrane vesicles containing lipopolysaccharides (LPS), which can penetrate periodontal tissues. Once in the periodontal tissues and in contact with immune cells, it may participate in the destructive innate host response associated with the disease. The exact mechanism of P. gingivalis LPS in the disease process is not clear, but it is known to affect a variety of immune responses. OBJECTIVES To investigate how LPS from P. gingivalis affect neutrophil extracellular trap (NET) formation, cell death and production of cytokines from human neutrophils and peripheral mononuclear blood mononuclear cells (PBMCs). MATERIALS AND METHODS Isolated neutrophils and PBMCs were cultured with LPS from P. gingivalis or Escherichia coli (E. coli) (control). The NET formation was measured using Sytox green stain. Cell death of neutrophils and PBMCs was analyzed using flow cytometry or Sytox green stain. Cytokine production was measured using enzyme-linked immunosorbent assay (ELISA) kit or Bio-Plex assay. RESULTS Exposure to LPS from P. gingivalis and E. coli caused significantly lower cell death in neutrophils. NETs were formed after exposure to the two different LPS. In PBMCs, exposure to P. gingivalis and E. coli LPS caused increased levels of IL-1β and IL-6 compared to unstimulated controls. Increased cell death in PBMCs after exposure to LPS from E. coli in comparison to LPS from P. gingivalis and unstimulated controls was also observed. CONCLUSIONS LPS from P. gingivalis has the ability to affect both human neutrophils and PBMCs with regard to cytokine production, cell death and production of NETs. LPS from P. gingivalis could be involved in the pathogenesis of periodontitis, and our results may contribute information regarding possible markers for diagnosis and targets for treatment of periodontal disease.
Collapse
Affiliation(s)
- Sara Alizadehgharib
- Department of Oral Microbiology and Immunology, University of Gothenburg, The Sahlgrenska Academy, Institute of Odontology, Gothenburg, Sweden
| | - Anna-Karin Östberg
- Department of Oral Microbiology and Immunology, University of Gothenburg, The Sahlgrenska Academy, Institute of Odontology, Gothenburg, Sweden
| | - Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, University of Gothenburg, The Sahlgrenska Academy, Institute of Odontology, Gothenburg, Sweden
| | - Ulf Dahlgren
- Department of Oral Microbiology and Immunology, University of Gothenburg, The Sahlgrenska Academy, Institute of Odontology, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, University of Gothenburg, The Sahlgrenska Academy, Institute of Odontology, Gothenburg, Sweden
| |
Collapse
|
15
|
Kawahara Y, Hirashita Y, Tamura C, Kudo Y, Sakai K, Togo K, Fukuda K, Matsunari O, Okamoto K, Ogawa R, Mizukami K, Okimoto T, Kodama M, Murakami K. Helicobacter pylori infection modulates endogenous hydrogen sulfide production in gastric cancer AGS cells. Helicobacter 2020; 25:e12732. [PMID: 32713122 DOI: 10.1111/hel.12732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/14/2020] [Accepted: 06/29/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Persistent Helicobacter pylori infection induces gastric mucosal atrophy, which is a precancerous condition. Hydrogen sulfide (H2 S), a gaseous biological transmitter, has been implicated in both the physiological functions of the gastrointestinal tract and its diseases. To understand gastric epithelial cell response against H pylori infection, we investigated the metabolic changes of gastric cancer cells co-cultured with H pylori and observed the modulation of endogenous H2 S production. MATERIALS AND METHODS Gastric cancer AGS cells were co-cultured with an H pylori standard strain possessing bacterial virulence factor CagA (ATCC 43504) and a strain without CagA (ATCC 51932). Three hours after inoculation, the cells were subjected to metabolomics analysis using gas chromatography-tandem mass spectrometry (GC-MS/MS). Orthogonal projections to latent structures discriminant analysis (OPLS-DA) and pathway analysis were performed. In addition, intracellular H2 S levels were measured by using HSip-1 fluorescent probe. RESULTS Results of OPLS-DA showed a significant difference between the metabolism of untreated control cells and cells inoculated with the H pylori strains ATCC 51932 or ATCC 43504, mainly due to 45 metabolites. Pathway analysis with the selected metabolites indicated that methionine metabolism, which is related to H2 S production, was the most frequently altered pathway. H pylori-inoculated cells produced more endogenous H2 S than control cells. Moreover, ATCC 43504-inoculated cells produced less H2 S than ATCC 51932-inoculated cells. CONCLUSIONS H pylori infection modulates endogenous H2 S production in AGS cells, suggesting that H2 S might be one of the bioactive molecules involved in the biological mechanisms of gastric mucosal disease including mucosal atrophy.
Collapse
Affiliation(s)
- Yoshinari Kawahara
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuka Hirashita
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Chikako Tamura
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoko Kudo
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kumiko Sakai
- Research Promotion Institute, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazumi Togo
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kensuke Fukuda
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Osamu Matsunari
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhisa Okamoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ryo Ogawa
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
16
|
Dental Pulp Mesenchymal Stem Cells as a Treatment for Periodontal Disease in Older Adults. Stem Cells Int 2020; 2020:8890873. [PMID: 32908546 PMCID: PMC7450326 DOI: 10.1155/2020/8890873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Periodontal disease (PD) is one of the main causes of tooth loss and is related to oxidative stress and chronic inflammation. Although different treatments have been proposed in the past, the vast majority do not regenerate lost tissues. In this sense, the use of dental pulp mesenchymal stem cells (DPMSCs) seems to be an alternative for the regeneration of periodontal bone tissue. A quasi-experimental study was conducted in a sample of 22 adults between 55 and 64 years of age with PD, without uncontrolled systemic chronic diseases. Two groups were formed randomly: (i) experimental group (EG) n = 11, with a treatment based on DPMSCs; and a (ii) control group (CG) n = 11, without a treatment of DPMSCs. Every participant underwent clinical and radiological evaluations and measurement of bone mineral density (BMD) by tomography. Saliva samples were taken as well, to determine the total concentration of antioxidants, superoxide dismutase (SOD), lipoperoxides, and interleukins (IL), before and 6 months after treatment. All subjects underwent curettage and periodontal surgery, the EG had a collagen scaffold treated with DPMSCs, while the CG only had the collagen scaffold placed. The EG with DPMSCs showed an increase in the BMD of the alveolar bone with a borderline statistical significance (baseline 638.82 ± 181.7 vs. posttreatment 781.26 ± 162.2 HU, p = 0.09). Regarding oxidative stress and inflammation markers, salivary SOD levels were significantly higher in EG (baseline 1.49 ± 0.96 vs. 2.14 ± 1.12 U/L posttreatment, p < 0.05) meanwhile IL1β levels had a decrease (baseline 1001.91 ± 675.5vs. posttreatment 722.3 ± 349.4 pg/ml, p < 0.05). Our findings suggest that a DPMSCs treatment based on DPMSCs has both an effect on bone regeneration linked to an increased SOD and decreased levels of IL1β in aging subjects with PD.
Collapse
|
17
|
Phillips L, Chu L, Kolodrubetz D. Multiple enzymes can make hydrogen sulfide from cysteine in Treponema denticola. Anaerobe 2020; 64:102231. [PMID: 32603680 PMCID: PMC7484134 DOI: 10.1016/j.anaerobe.2020.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Treponema denticola is a spirochete that is involved in causing periodontal diseases. This bacterium can produce H2S from thiol compounds found in the gingival crevicular fluid. Determining how H2S is made by oral bacteria is important since this molecule is present at high levels in periodontally-diseased pockets and the biological effects of H2S can explain some of the pathologies seen in periodontitis. Thus, it is of interest to identify the enzyme, or enzymes, involved in the synthesis of H2S by T. denticola. We, and others, have previously identified and characterized a T. denticola cystalysin, called HlyA, which hydrolyzes cysteine into H2S (and pyruvate and ammonia). However, there have been no studies to show that HlyA is, or is not, the only pathway that T. denticola can use to make H2S. To address this question, allelic replacement mutagenesis was used to make a deletion mutant (ΔhlyA) in the gene encoding HlyA. The mutant produces the same amount of H2S from cysteine as do wild type spirochetes, indicating that T. denticola has at least one other enzyme that can generate H2S from cysteine. To identify candidates for this other enzyme, a BLASTp search of T. denticola strain 33520 was done. There was one gene that encoded an HlyA homolog so we named it HlyB. Recombinant His-tagged HlyB was expressed in E. coli and partially purified. This enzyme was able to make H2S from cysteine in vitro. To test the role of HlyB in vivo, an HlyB deletion mutant (ΔhlyB) was constructed in T. denticola. This mutant still made normal levels of H2S from cysteine, but a strain mutated in both hly genes (ΔhlyA ΔhlyB) synthesizes significantly less H2S from cysteine. We conclude that the HlyA and HlyB enzymes perform redundant functions in vivo and are the major contributors to H2S production in T. denticola. However, at least one other enzyme can still convert cysteine to H2S in the ΔhlyA ΔhlyB mutant. An in silico analysis that identifies candidate genes for this other enzyme is presented.
Collapse
Affiliation(s)
- Linda Phillips
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - David Kolodrubetz
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
18
|
Gu Y, Han X. Toll-Like Receptor Signaling and Immune Regulatory Lymphocytes in Periodontal Disease. Int J Mol Sci 2020; 21:ijms21093329. [PMID: 32397173 PMCID: PMC7247565 DOI: 10.3390/ijms21093329] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022] Open
Abstract
Periodontitis is known to be initiated by periodontal microbiota derived from biofilm formation. The microbial dysbiotic changes in the biofilm trigger the host immune and inflammatory responses that can be both beneficial for the protection of the host from infection, and detrimental to the host, causing tissue destruction. During this process, recognition of Pathogen-Associated Molecular Patterns (PAMPs) by the host Pattern Recognition Receptors (PRRs) such as Toll-like receptors (TLRs) play an essential role in the host–microbe interaction and the subsequent innate as well as adaptive responses. If persistent, the adverse interaction triggered by the host immune response to the microorganisms associated with periodontal biofilms is a direct cause of periodontal inflammation and bone loss. A large number of T and B lymphocytes are infiltrated in the diseased gingival tissues, which can secrete inflammatory mediators and activate the osteolytic pathways, promoting periodontal inflammation and bone resorption. On the other hand, there is evidence showing that immune regulatory T and B cells are present in the diseased tissue and can be induced for the enhancement of their anti-inflammatory effects. Changes and distribution of the T/B lymphocytes phenotype seem to be a key determinant of the periodontal disease outcome, as the functional activities of these cells not only shape up the overall immune response pattern, but may directly regulate the osteoimmunological balance. Therefore, interventional strategies targeting TLR signaling and immune regulatory T/B cells may be a promising approach to rebalance the immune response and alleviate bone loss in periodontal disease. In this review, we will examine the etiological role of TLR signaling and immune cell osteoclastogenic activity in the pathogenesis of periodontitis. More importantly, the protective effects of immune regulatory lymphocytes, particularly the activation and functional role of IL-10 expressing regulatory B cells, will be discussed.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
19
|
da Costa FP, Puty B, Nogueira LS, Mitre GP, dos Santos SM, Teixeira BJB, Kataoka MSDS, Martins MD, Barboza CAG, Monteiro MC, Rogez H, de Oliveira EHC, Lima RR. Piceatannol Increases Antioxidant Defense and Reduces Cell Death in Human Periodontal Ligament Fibroblast under Oxidative Stress. Antioxidants (Basel) 2019; 9:E16. [PMID: 31878036 PMCID: PMC7023480 DOI: 10.3390/antiox9010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023] Open
Abstract
Piceatannol is a resveratrol metabolite that is considered a potent antioxidant and cytoprotector because of its high capacity to chelate/sequester reactive oxygen species. In pathogenesis of periodontal diseases, the imbalance of reactive oxygen species is closely related to the disorder in the cells and may cause changes in cellular metabolism and mitochondrial activity, which is implicated in oxidative stress status or even in cell death. In this way, this study aimed to evaluate piceatannol as cytoprotector in culture of human periodontal ligament fibroblasts through in vitro analyses of cell viability and oxidative stress parameters after oxidative stress induced as an injury simulator. Fibroblasts were seeded and divided into the following study groups: control, vehicle, control piceatannol, H2O2 exposure, and H2O2 exposure combined with the maintenance in piceatannol ranging from 0.1 to 20 μM. The parameters analyzed following exposure were cell viability by trypan blue exclusion test, general metabolism status by the 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method, mitochondrial activity through the ATP production, total antioxidant capacity, and reduced gluthatione. Piceatannol was shown to be cytoprotective due the maintenance of cell viability between 1 and 10 μM even in the presence of H2O2. In a concentration of 0.1 μM piceatannol decreased significantly cell viability but increased cellular metabolism and antioxidant capacity of the fibroblasts. On the other hand, the fibroblasts treated with piceatannol at 1 μM presented low metabolism and antioxidant capacity. However, piceatannol did not protect cells from mitochondrial damage as measured by ATP production. In summary, piceatannol is a potent antioxidant in low concentrations with cytoprotective capacity, but it does not prevent all damage caused by hydrogen peroxide.
Collapse
Affiliation(s)
- Flávia Póvoa da Costa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (F.P.d.C.); (B.P.); (L.S.N.)
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua-Pará 67030-000, Brazil;
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (F.P.d.C.); (B.P.); (L.S.N.)
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua-Pará 67030-000, Brazil;
| | - Lygia S. Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (F.P.d.C.); (B.P.); (L.S.N.)
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua-Pará 67030-000, Brazil;
| | - Geovanni Pereira Mitre
- Laboratory of Cell Culture, Faculty of Dentistry, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (G.P.M.); (M.S.d.S.K.)
| | - Sávio Monteiro dos Santos
- Laboratory of Oxidative Stress and Clinical Immunology, Faculty of Pharmacy, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (S.M.d.S.); (M.C.M.)
| | - Bruno José Brito Teixeira
- Center for Valorization of Amazonian Bioactive Compounds (CVACBA) & Federal University of Pará UFPA, Belém-Pará 66075-110, Brazil; (B.J.B.T.); (H.R.)
| | - Maria Sueli da Silva Kataoka
- Laboratory of Cell Culture, Faculty of Dentistry, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (G.P.M.); (M.S.d.S.K.)
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil;
| | | | - Marta Chagas Monteiro
- Laboratory of Oxidative Stress and Clinical Immunology, Faculty of Pharmacy, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (S.M.d.S.); (M.C.M.)
| | - Hervé Rogez
- Center for Valorization of Amazonian Bioactive Compounds (CVACBA) & Federal University of Pará UFPA, Belém-Pará 66075-110, Brazil; (B.J.B.T.); (H.R.)
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (F.P.d.C.); (B.P.); (L.S.N.)
| |
Collapse
|
20
|
H 2S attenuates endoplasmic reticulum stress in hypoxia-induced pulmonary artery hypertension. Biosci Rep 2019; 39:BSR20190304. [PMID: 31239370 PMCID: PMC6614575 DOI: 10.1042/bsr20190304] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Previous studies have found that hydrogen sulfide (H2S) has multiple functions such as anti-inflammatory, antioxidative in addition to biological effects among the various organs. Exaggerated proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is a key component of vascular remodeling. We hypothesized that endogenous bioactive molecular known to suppress endoplasmic reticulum (ER) stress signaling, like H2S, will inhibit the disruption of the ER-mitochondrial unit and prevent/reverse pulmonary arterial hypertension (PAH). Methods and results: A hypoxic model was established with PASMCs to investigate the possible role of H2S in PAH. Effects of H2S on proliferation of PASMCs were evaluated by CCK-8 and EdU assay treated with or without GYY4137 (donor of H2S). H2S significantly inhibited hypoxia-induced increase in PASMCs proliferation in a dose-dependent manner. H2S by intraperitoneal injection with rats both prevented and reversed chronic hypoxia-induced pulmonary hypertension in rats, decreasing pulmonary vascular resistance, pulmonary artery remodeling and right ventricular hypertrophy, and improving functional capacity without affecting systemic hemodynamic. Exogenous H2S suppressed ER stress indexes in vivo and in vitro, decreased activating transcription factor 6 activation, and inhibited the hypoxia-induced decrease in mitochondrial calcium and mitochondrial function. Conclusion: H2S effectively inhibits hypoxia-induced increase in cell proliferation, migration, and oxidative stress in PASMCs, and NOX-4 might be the underlying mechanism of PAH. Attenuating ER stress with exogenous H2S may be a novel therapeutic strategy in pulmonary hypertension with high translational potential.
Collapse
|
21
|
Hu L, Li H, Huang S, Wang C, Sun WJ, Mo HZ, Shi ZQ, Chen J. Eugenol Confers Cadmium Tolerance via Intensifying Endogenous Hydrogen Sulfide Signaling in Brassica rapa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9914-9922. [PMID: 30188702 DOI: 10.1021/acs.jafc.8b03098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eugenol, a plant-derived small compound, shows great medicinal potential. However, whether and how eugenol regulates crop physiology remains elusive. Here we reported that eugenol induced Cd (cadmium) tolerance in the root of Brassica rapa. Roots were treated with eugenol and CdCl2 simultaneously (eugenol + Cd) or pretreated with eugenol followed by CdCl2 treatment (eugenol → Cd). Eugenol significantly attenuated Cd-induced growth inhibition, ROS accumulation, oxidative injury, and cell death, which were confirmed by in vivo histochemical analysis. Eugenol remarkably decreased free Cd2+ accumulation in root. Eugenol intensified GSH (glutathione) accumulation in roots upon CdCl2 exposure, which explained the decrease in free Cd2+ and attenuation of oxidative injury. Eugenol stimulated endogenous H2S (hydrogen sulfide) generation by upregulating the expression of BrLCD ( l-cysteine desulfhydrase) and BrDCD ( d-cysteine desulfhydrase) as well as their enzymatic activities in CdCl2-treated root. Application of H2S biosynthesis inhibitor or H2S scavenger led to the decrease in endogenous H2S level in Cd-treated root, which further compromised all the above effects of eugenol. These findings suggested that eugenol triggered H2S → GSH signaling cassette in plants to combat Cd stress, which shed new light on eugenol-modulated plant physiology and the interaction between eugenol and H2S.
Collapse
Affiliation(s)
- Liangbin Hu
- Department of Food Science , Henan Institute of Science and Technology , Xinxiang 453003 , China
| | - Hui Li
- Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Sijie Huang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection , Nanjing 210042 , China
| | - Chao Wang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection , Nanjing 210042 , China
| | - Wei-Jie Sun
- Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Hai-Zhen Mo
- Department of Food Science , Henan Institute of Science and Technology , Xinxiang 453003 , China
| | - Zhi Qi Shi
- Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Jian Chen
- Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
- Supervision & Testing Center for Processed Agri-products (Nanjing), Ministry of Agriculture , Nanjing 210014 , China
| |
Collapse
|
22
|
Feng A, Ling C, Xin-Duo L, Bing W, San-Wu W, Yu Z, Yu-Lan H, You-En Z. Hydrogen Sulfide Protects Human Cardiac Fibroblasts Against H 2O 2-induced Injury Through Regulating Autophagy-Related Proteins. Cell Transplant 2018; 27:1222-1234. [PMID: 30022684 PMCID: PMC6434465 DOI: 10.1177/0963689718779361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Autophagy, an intracellular bulk degradation process of proteins and organelles, can be induced by myocardial ischemia in the heart. However, the causative role of autophagy in the survival of human cardiac fibroblasts and the underlying mechanisms are incompletely understood. Oxidative stress can induce autophagy in cultured cells upon hydrogen peroxide (H2O2) exposure. Because hydrogen sulfide (H2S) regulates reactive oxygen species (ROS) and apoptosis, we hypothesize that H2S may have a cardioprotective function. To examine our hypothesis, we investigated the regulation of autophagy by the H2S donor sodium hydrosulfide (NaHS), using a cell model of human cardiac fibroblasts from adult ventricles (HCF-av) that suffered from endoplasmic reticulum (ER) stress by H2O2. In the present study, we found that the apoptosis and autophagy were induced along with ER stress by H2O2 in the primary cultured HCF-av cells. In contrast, H2S suppressed HCF-av cell apoptosis and autophagic flux, in part directly by inhibiting ROS production and preserving mitochondrial functions.
Collapse
Affiliation(s)
- Ao Feng
- 1 Department of Medical Imaging Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Chen Ling
- 2 Department of Cardiology, Jinzhou Medical University, Shiyan, China
| | - Lin Xin-Duo
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Wu Bing
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Wu San-Wu
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhan Yu
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Huang Yu-Lan
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhang You-En
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
23
|
Liang D, Huang A, Jin Y, Lin M, Xia X, Chen X, Huang A. Protective effects of exogenous NaHS against sepsis-induced myocardial mitochondrial injury by enhancing the PGC-1α/NRF2 pathway and mitochondrial biosynthesis in mice. Am J Transl Res 2018; 10:1422-1430. [PMID: 29887956 PMCID: PMC5992544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED This study aimed to examine whether exogenous NaHS can protect myocardial mitochondrial injury from sepsis by enhancing the peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α)/ nuclear factor erythroid-2-related factor 2 (NRF2) pathway and mitochondrial biosynthesis in mice. Animals were divided into sham-operated, sepsis, sepsis + 25 μmol/L NaHS, sepsis + 50 μmol/L NaHS, sepsis + 100 μmol/L NaHS, and sepsis + 200 μmol/L NaHS groups. The myocardial damage was evaluated by hematoxylin and eosin staining for myocardial microstructure and serum cardiac troponin I (cTnI) detection. The myocardial mitochondrial damage was evaluated through transmission electron microscopic observation of mitochondrial microstructure and detection of the degree of myocardial mitochondrial swelling. The adenosine triphosphate (ATP) level was used to appraise the mitochondrial function. The mRNA expression levels of Nrf2, PGC-1α, and Tfam were analyzed to explore the molecular mechanism. RESULTS In the sepsis group, the structure of myocardial tissue and mitochondria were significantly damaged, the serum cTnI level increased (P < 0.05), the ATP level reduced, the degree of myocardial mitochondrial swelling aggravated, and the mRNA expression levels of Nrf2, PGC-1α, and Tfam increased (P < 0.05). After NaHS treatment, the structure of myocardial tissue and mitochondria improved, the cTnI level reduced, the ATP level increased, the degree of myocardial mitochondrial swelling alleviated, and the mRNA expression level of Nrf2, PGC-1α, and Tfam increased continuously in a dose-dependent manner (P < 0.05). CONCLUSIONS Exogenous NaHS had a protective effect against myocardial mitochondrial injury in sepsis. The mechanism might lie in enhancing the PGC-1α/NRF2 pathway and mitochondrial biosynthesis.
Collapse
|
24
|
Hernández-Monjaraz B, Santiago-Osorio E, Monroy-García A, Ledesma-Martínez E, Mendoza-Núñez VM. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review. Int J Mol Sci 2018; 19:E944. [PMID: 29565801 PMCID: PMC5979585 DOI: 10.3390/ijms19040944] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is a chronic disease that begins with a period of inflammation of the supporting tissues of the teeth table and then progresses, destroying the tissues until loss of the teeth occurs. The restoration of the damaged dental support apparatus is an extremely complex process due to the regeneration of the cementum, the periodontal ligament, and the alveolar bone. Conventional treatment relies on synthetic materials that fill defects and replace lost dental tissue, but these approaches are not substitutes for a real regeneration of tissue. To address this, there are several approaches to tissue engineering for regenerative dentistry, among them, the use of stem cells. Mesenchymal stem cells (MSC) can be obtained from various sources of adult tissues, such as bone marrow, adipose tissue, skin, and tissues of the orofacial area. MSC of dental origin, such as those found in the bone marrow, have immunosuppressive and immunotolerant properties, multipotency, high proliferation rates, and the capacity for tissue repair. However, they are poorly used as sources of tissue for therapeutic purposes. Their accessibility makes them an attractive source of mesenchymal stem cells, so this review describes the field of dental stem cell research and proposes a potential mechanism involved in periodontal tissue regeneration induced by dental MSC.
Collapse
Affiliation(s)
- Beatriz Hernández-Monjaraz
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico.
| | - Edelmiro Santiago-Osorio
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico.
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, 09230 Mexico City, Mexico.
| | - Edgar Ledesma-Martínez
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico.
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico.
| |
Collapse
|
25
|
Insights into the Evolution of Host Association through the Isolation and Characterization of a Novel Human Periodontal Pathobiont, Desulfobulbus oralis. mBio 2018. [PMID: 29535201 PMCID: PMC5850319 DOI: 10.1128/mbio.02061-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis, the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease. Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing. Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome “dark matter,” cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.
Collapse
|
26
|
Yang R, Yu T, Liu D, Shi S, Zhou Y. Hydrogen sulfide promotes immunomodulation of gingiva-derived mesenchymal stem cells via the Fas/FasL coupling pathway. Stem Cell Res Ther 2018. [PMID: 29523215 PMCID: PMC5845196 DOI: 10.1186/s13287-018-0804-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells derived from gingiva (GMSCs) display profound immunomodulation properties in addition to self-renewal and multilineage differentiation capacities. Hydrogen sulfide (H2S) is not only an environmental pollutant, but also is an important biological gas transmitter in health and disease. METHODS We used an in-vitro coculture system and a mouse colitis model to compare the immunomodulatory effects between control and H2S-deficient GMSCs. The flow cytometry analysis was used for T-cell apoptosis and T-helper 17 (Th17) and regulatory T (Treg) cell differentiation. RESULTS We revealed that GMSCs exerted their immunomodulatory effect by inducing T-cell apoptosis, promoting Treg cell polarization, and inhibiting Th17 cell polarization in vitro. The levels of H2S regulated the immunomodulatory effect of GMSCs. Mechanically, H2S deficiency downregulated the expression of Fas in GMSCs, resulting in reduced secretion of monocyte chemotactic protein 1 (MCP-1), which in turn led to decreased T-cell migration to GMSCs mediated by MCP-1. Moreover, H2S deficiency downregulated the expression of Fas ligand (FasL) in GMSCs. The Fas/FasL coupling-induced T-cell apoptosis by GMSCs was attenuated in H2S-deficient GMSCs. Consistent with this, H2S-deficient GMSCs showed attenuated therapeutic effects on colitis in vivo, which could be restored by treatment with the H2S donor, NaHS. CONCLUSIONS These findings showed that H2S was required to maintain immunomodulation of GMSCs, which was mediated by Fas/FasL coupling-induced T-cell apoptosis.
Collapse
Affiliation(s)
- Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China. .,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA.
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| |
Collapse
|
27
|
Lambertini E, Penolazzi L, Angelozzi M, Grassi F, Gambari L, Lisignoli G, De Bonis P, Cavallo M, Piva R. The expression of cystathionine gamma-lyase is regulated by estrogen receptor alpha in human osteoblasts. Oncotarget 2017; 8:101686-101696. [PMID: 29254196 PMCID: PMC5731906 DOI: 10.18632/oncotarget.21514] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide (H2S), generated in the osteoblasts predominantly via cystathionine-γ-lyase (CSE), is bone protective. Previous studies suggested that the onset of bone loss due to estrogen deficiency is associated to decreased levels of H2S and blunted gene expression of CSE. However, there are still a lot of unknowns on how H2S levels influence bone cells function. The present study aims to explore the mechanisms by which estrogen may regulate CSE expression, in particular the role of estrogen receptor alpha (ERα) in human osteoblasts (hOBs). Vertebral lamina derived hOBs were characterized and then assessed for CSE expression by western blot analysis in the presence or absence of ERα overexpression. Bioinformatic analysis, luciferase reporter assay and ChIP assay were performed to investigate ERα recruitment and activity on hCSE gene promoter. Three putative half Estrogen Responsive Elements (EREs) were identified in the hCSE core promoter and were found to participate in the ERα - mediated positive regulation of CSE expression. All osteoblast samples responded to ERα over-expression increasing the levels of CSE protein in a comparable manner. Notably, the ERα recruitment on the regulatory regions of the CSE promoter occurred predominantly in female hOBs than in male hOBs. The obtained results suggest that CSE/H2S system is in relation with estrogen signaling in bone in a gender specific manner.
Collapse
Affiliation(s)
- Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marco Angelozzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Laura Gambari
- Ramses Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Gina Lisignoli
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Pasquale De Bonis
- Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy
| | - Michele Cavallo
- Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
28
|
Swerts AA, Santos BFE, Bruzadelli SR, Brigagão MRPL, Lima DCD, Fernandes LA. Treatment of experimental periodontal disease by laser therapy in simvastatin-modified rats. J Appl Oral Sci 2017; 25:387-395. [PMID: 28877277 PMCID: PMC5595111 DOI: 10.1590/1678-7757-2016-0467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/29/2016] [Indexed: 12/28/2022] Open
Abstract
Low intensity laser can be used as a promising alternative in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Andressa Araújo Swerts
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, MG, Brasil
| | | | - Simone Ribeiro Bruzadelli
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, MG, Brasil
| | | | - Daniela Coelho de Lima
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, MG, Brasil
| | - Leandro Araújo Fernandes
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, MG, Brasil
| |
Collapse
|
29
|
Functional and Molecular Insights of Hydrogen Sulfide Signaling and Protein Sulfhydration. J Mol Biol 2016; 429:543-561. [PMID: 28013031 DOI: 10.1016/j.jmb.2016.12.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a novel gasotransmitter, is endogenously synthesized by multiple enzymes that are differentially expressed in the peripheral tissues and central nervous systems. H2S regulates a wide range of physiological processes, namely cardiovascular, neuronal, immune, respiratory, gastrointestinal, liver, and endocrine systems, by influencing cellular signaling pathways and sulfhydration of target proteins. This review focuses on the recent progress made in H2S signaling that affects mechanistic and functional aspects of several biological processes such as autophagy, inflammation, proliferation and differentiation of stem cell, cell survival/death, and cellular metabolism under both physiological and pathological conditions. Moreover, we highlighted the cross-talk between nitric oxide and H2S in several bilogical contexts.
Collapse
|