1
|
Zamorano-Cataldo M, Vega-Vásquez I, García-Navarrete C, Toledo J, Bustamante D, Ezquer F, Urra FA, Farfán-Troncoso N, Herrera-Marschitz M, Morales P. Mitochondrial dynamics and sex-specific responses in the developing rat hippocampus: Effect of perinatal asphyxia and mesenchymal stem cell Secretome treatment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119851. [PMID: 39332539 DOI: 10.1016/j.bbamcr.2024.119851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
AIMS Perinatal asphyxia is one of the major causes of neonatal death at birth. Survivors can progress but often suffer from long-term sequelae. We aim to determine the effects of perinatal asphyxia on mitochondrial dynamics and whether mesenchymal stem cell secretome (MSC-S) treatment can alleviate the deleterious effects. MATERIALS AND METHODS Animals were subjected to 21 min of asphyxia at the time of delivery. MSC-S or vehicle was intranasally administered 2 h post-delivery. Mitochondrial mass (D-loop, qPCR), mitochondrial dynamics proteins (Drp1, Fis1 and OPA1, Western blot), mitochondrial dynamics (TOMM20, Immunofluorescence), as well as mitochondrial membrane potential (ΔΨm) (Safranin O) were evaluated at P1 and P7 in the hippocampus. KEY FINDINGS Perinatal asphyxia increased levels of mitochondrial dynamics proteins Drp1 and S-OPA1 at P1 and Fis1 at P7. Mitochondrial density and mass were decreased at P1. Perinatal asphyxia induced sex-specific differences, with increased L-OPA1 in females at P7 and increased mitochondria circularity. In males, asphyxia-exposed animals exhibited a reduced ΔΨm at P7. MSC-S treatment normalised levels of mitochondrial dynamics proteins involved in fission. SIGNIFICANCE This study provides novel insights into the effects of perinatal asphyxia on mitochondrial dynamics in the developing brain and on the therapeutic opportunities provided by mesenchymal stem cell secretome treatment. It also highlights on the relevance of considering sex as a biological variable in perinatal brain injury and therapy development. These findings contribute to the development of targeted, personalised therapies for infants affected by perinatal asphyxia.
Collapse
Affiliation(s)
- M Zamorano-Cataldo
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile
| | - I Vega-Vásquez
- Advanced Scientific Equipment Network (REDECA), Medical Faculty, Universidad de Chile, Chile
| | - C García-Navarrete
- Advanced Scientific Equipment Network (REDECA), Medical Faculty, Universidad de Chile, Chile
| | - J Toledo
- Advanced Scientific Equipment Network (REDECA), Medical Faculty, Universidad de Chile, Chile
| | - D Bustamante
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile
| | - F Ezquer
- Center for Regenerative Medicine, Medical Faculty, Clínica Alemana, Universidad del Desarrollo, Chile
| | - F A Urra
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile; Laboratory of Metabolic Plasticity and Bioenergetics, Molecular & Clinical Pharmacology Program, Medical Faculty, Universidad de Chile, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Medical Faculty, Universidad de Chile, Chile
| | - N Farfán-Troncoso
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile.
| | - M Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile.
| | - P Morales
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile; Department of Neuroscience, Medical Faculty, Universidad de Chile, Chile.
| |
Collapse
|
2
|
Di Nottia M, Rizza T, Baruffini E, Nesti C, Torraco A, Diodato D, Martinelli D, Dal Canto F, Gilea AI, Zoccola M, Siri B, Dionisi-Vici C, Bertini E, Santorelli FM, Goffrini P, Carrozzo R. Severe mitochondrial encephalomyopathy caused by de novo variants in OPA1 gene. Front Genet 2024; 15:1437959. [PMID: 39233737 PMCID: PMC11372846 DOI: 10.3389/fgene.2024.1437959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Background Mitochondria adjust their shape in response to the different energetic and metabolic requirements of the cell, through extremely dynamic fusion and fission events. Several highly conserved dynamin-like GTPases are involved in these processes and, among those, the OPA1 protein is a key player in the fusion of inner mitochondrial membranes. Hundreds of monoallelic or biallelic pathogenic gene variants have been described in OPA1, all associated with a plethora of clinical phenotypes without a straightforward genotype-phenotype correlation. Methods Here we report two patients harboring novel de novo variants in OPA1. DNA of two patients was analyzed using NGS technology and the pathogenicity has been evaluated through biochemical and morphological studies in patient's derived fibroblasts and in yeast model. Results The two patients here reported manifest with neurological signs resembling Leigh syndrome, thus further expanding the clinical spectrum associated with variants in OPA1. In cultured skin fibroblasts we observed a reduced amount of mitochondrial DNA (mtDNA) and altered mitochondrial network characterized by more fragmented mitochondria. Modeling in yeast allowed to define the deleterious mechanism and the pathogenicity of the identified gene mutations. Conclusion We have described two novel-single OPA1 mutations in two patients characterized by early-onset neurological signs, never documented, thus expanding the clinical spectrum of this complex syndrome. Moreover, both yeast model and patients derived fibroblasts showed mitochondrial defects, including decreased mtDNA maintenance, correlating with patients' clinical phenotypes.
Collapse
Affiliation(s)
- Michela Di Nottia
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Claudia Nesti
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Alessandra Torraco
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daria Diodato
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Diego Martinelli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Zoccola
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Barbara Siri
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Enrico Bertini
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Ali A, Esmaeil A, Behbehani R. Mitochondrial Chronic Progressive External Ophthalmoplegia. Brain Sci 2024; 14:135. [PMID: 38391710 PMCID: PMC10887352 DOI: 10.3390/brainsci14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Chronic progressive external ophthalmoplegia (CPEO) is a rare disorder that can be at the forefront of several mitochondrial diseases. This review overviews mitochondrial CPEO encephalomyopathies to enhance accurate recognition and diagnosis for proper management. METHODS This study is conducted based on publications and guidelines obtained by selective review in PubMed. Randomized, double-blind, placebo-controlled trials, Cochrane reviews, and literature meta-analyses were particularly sought. DISCUSSION CPEO is a common presentation of mitochondrial encephalomyopathies, which can result from alterations in mitochondrial or nuclear DNA. Genetic sequencing is the gold standard for diagnosing mitochondrial encephalomyopathies, preceded by non-invasive tests such as fibroblast growth factor-21 and growth differentiation factor-15. More invasive options include a muscle biopsy, which can be carried out after uncertain diagnostic testing. No definitive treatment option is available for mitochondrial diseases, and management is mainly focused on lifestyle risk modification and supplementation to reduce mitochondrial load and symptomatic relief, such as ptosis repair in the case of CPEO. Nevertheless, various clinical trials and endeavors are still at large for achieving beneficial therapeutic outcomes for mitochondrial encephalomyopathies. KEY MESSAGES Understanding the varying presentations and genetic aspects of mitochondrial CPEO is crucial for accurate diagnosis and management.
Collapse
Affiliation(s)
| | | | - Raed Behbehani
- Neuro-Ophthalmology Unit, Ibn Sina Hospital, Al-Bahar Ophthalmology Center, Kuwait City 70035, Kuwait; (A.A.); (A.E.)
| |
Collapse
|
4
|
Yao BF, Luo XJ, Peng J. A review for the correlation between optic atrophy 1-dependent mitochondrial fusion and cardiovascular disorders. Int J Biol Macromol 2024; 254:127910. [PMID: 37939779 DOI: 10.1016/j.ijbiomac.2023.127910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial dynamics homeostasis is sustained by continuous and balanced fission and fusion, which are determinants of morphology, abundance, biogenesis and mitophagy of mitochondria. Optic atrophy 1 (OPA1), as the only inner mitochondrial membrane fusion protein, plays a key role in stabilizing mitochondrial dynamics. The disturbance of mitochondrial dynamics contributes to the pathophysiological progress of cardiovascular disorders, which are the main cause of death worldwide in recent decades and result in tremendous social burden. In this review, we describe the latest findings regarding OPA1 and its role in mitochondrial fusion. We summarize the post-translational modifications (PTMs) for OPA1 and its regulatory role in mitochondrial dynamics. Then the diverse cell fates caused by OPA1 expression during cardiovascular disorders are discussed. Moreover, cardiovascular disorders (such as heart failure, myocardial ischemia/reperfusion injury, cardiomyopathy and cardiac hypertrophy) relevant to OPA1-dependent mitochondrial dynamics imbalance have been detailed. Finally, we highlight the potential that targeting OPA1 to impact mitochondrial fusion may be used as a novel strategy against cardiovascular disorders.
Collapse
Affiliation(s)
- Bi-Feng Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
5
|
Wang L, Rivas R, Wilson A, Park YM, Walls S, Yu T, Miller AC. Dose-Dependent Effects of Radiation on Mitochondrial Morphology and Clonogenic Cell Survival in Human Microvascular Endothelial Cells. Cells 2023; 13:39. [PMID: 38201243 PMCID: PMC10778067 DOI: 10.3390/cells13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
To better understand radiation-induced organ dysfunction at both high and low doses, it is critical to understand how endothelial cells (ECs) respond to radiation. The impact of irradiation (IR) on ECs varies depending on the dose administered. High doses can directly damage ECs, leading to EC impairment. In contrast, the effects of low doses on ECs are subtle but more complex. Low doses in this study refer to radiation exposure levels that are below those that cause immediate and necrotic damage. Mitochondria are the primary cellular components affected by IR, and this study explored their role in determining the effect of radiation on microvascular endothelial cells. Human dermal microvascular ECs (HMEC-1) were exposed to varying IR doses ranging from 0.1 Gy to 8 Gy (~0.4 Gy/min) in the AFRRI 60-Cobalt facility. Results indicated that high doses led to a dose-dependent reduction in cell survival, which can be attributed to factors such as DNA damage, oxidative stress, cell senescence, and mitochondrial dysfunction. However, low doses induced a small but significant increase in cell survival, and this was achieved without detectable DNA damage, oxidative stress, cell senescence, or mitochondrial dysfunction in HMEC-1. Moreover, the mitochondrial morphology was assessed, revealing that all doses increased the percentage of elongated mitochondria, with low doses (0.25 Gy and 0.5 Gy) having a greater effect than high doses. However, only high doses caused an increase in mitochondrial fragmentation/swelling. The study further revealed that low doses induced mitochondrial elongation, likely via an increase in mitochondrial fusion protein 1 (Mfn1), while high doses caused mitochondrial fragmentation via a decrease in optic atrophy protein 1 (Opa1). In conclusion, the study suggests, for the first time, that changes in mitochondrial morphology are likely involved in the mechanism for the radiation dose-dependent effect on the survival of microvascular endothelial cells. This research, by delineating the specific mechanisms through which radiation affects endothelial cells, offers invaluable insights into the potential impact of radiation exposure on cardiovascular health.
Collapse
Affiliation(s)
- Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Rafael Rivas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Angelo Wilson
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Yu Min Park
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shannon Walls
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Tianzheng Yu
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandra C. Miller
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Radiation Science and Radiology, Uniformed Services University Health Sciences, Bethesda, MD 20889, USA
- Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Chen J, Shao J, Wang Y, Wu K, Huang M. OPA1, a molecular regulator of dilated cardiomyopathy. J Cell Mol Med 2023; 27:3017-3025. [PMID: 37603376 PMCID: PMC10568666 DOI: 10.1111/jcmm.17918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease with no specific treatment, poor prognosis and high mortality. During DCM development, there is apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. Optic atrophy 1 (OPA1) appears at high frequency in these three aspects. DCM LMNA (LaminA/C) gene mutation can activate TP53, and the study of P53 shows that P53 affects OPA1 through Bak/Bax and OMA1 (a metalloprotease). OPA1 can be considered the missing link between DCMp53 and DCM apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. OPA1 regulates apoptosis by regulating the release of cytochrome c from the mitochondrial matrix through CJs (crisp linkages, located in the inner mitochondrial membrane) and unbalances mitochondrial fusion and fission by affecting mitochondrial inner membrane (IM) fusion. OPA1 is also associated with the formation and maintenance of mitochondrial cristae. OPA1 is not the root cause of DCM, but it is an essential mediator in P53 mediating the occurrence and development of DCM, so OPA1 also becomes a molecular regulator of DCM. This review discusses the implication of OPA1 for DCM from three aspects: apoptosis, mitochondrial dynamics and ridge structure.
Collapse
Affiliation(s)
- Jiaqi Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jianan Shao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yaoyao Wang
- Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
| | - Kangxiang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Mingyuan Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
7
|
Huang D, Chen S, Xiong D, Wang H, Zhu L, Wei Y, Li Y, Zou S. Mitochondrial Dynamics: Working with the Cytoskeleton and Intracellular Organelles to Mediate Mechanotransduction. Aging Dis 2023; 14:1511-1532. [PMID: 37196113 PMCID: PMC10529762 DOI: 10.14336/ad.2023.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/01/2023] [Indexed: 05/19/2023] Open
Abstract
Cells are constantly exposed to various mechanical environments; therefore, it is important that they are able to sense and adapt to changes. It is known that the cytoskeleton plays a critical role in mediating and generating extra- and intracellular forces and that mitochondrial dynamics are crucial for maintaining energy homeostasis. Nevertheless, the mechanisms by which cells integrate mechanosensing, mechanotransduction, and metabolic reprogramming remain poorly understood. In this review, we first discuss the interaction between mitochondrial dynamics and cytoskeletal components, followed by the annotation of membranous organelles intimately related to mitochondrial dynamic events. Finally, we discuss the evidence supporting the participation of mitochondria in mechanotransduction and corresponding alterations in cellular energy conditions. Notable advances in bioenergetics and biomechanics suggest that the mechanotransduction system composed of mitochondria, the cytoskeletal system, and membranous organelles is regulated through mitochondrial dynamics, which may be a promising target for further investigation and precision therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
9
|
Zou W, Yang L, Lu H, Li M, Ji D, Slone J, Huang T. Application of super-resolution microscopy in mitochondria-dynamic diseases. Adv Drug Deliv Rev 2023; 200:115043. [PMID: 37536507 DOI: 10.1016/j.addr.2023.115043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Limited by spatial and temporal resolution, traditional optical microscopy cannot image the delicate ultra-structure organelles and sub-organelles. The emergence of super-resolution microscopy makes it possible. In this review, we focus on mitochondria. We summarize the process of mitochondrial dynamics, the primary proteins that regulate mitochondrial morphology, the diseases related to mitochondrial dynamics. The purpose is to apply super-resolution microscopy developed during recent years to the mitochondrial research. By providing the right research tools, we will help to promote the application of this technique to the in-depth elucidation of the pathogenesis of diseases related to mitochondrial dynamics, assistdiagnosis and develop the therapeutic treatment.
Collapse
Affiliation(s)
- Weiwei Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hedong Lu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jesse Slone
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Taosheng Huang
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
10
|
Nyenhuis SB, Wu X, Strub MP, Yim YI, Stanton AE, Baena V, Syed ZA, Canagarajah B, Hammer JA, Hinshaw JE. OPA1 helical structures give perspective to mitochondrial dysfunction. Nature 2023; 620:1109-1116. [PMID: 37612506 DOI: 10.1038/s41586-023-06462-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
Dominant optic atrophy is one of the leading causes of childhood blindness. Around 60-80% of cases1 are caused by mutations of the gene that encodes optic atrophy protein 1 (OPA1), a protein that has a key role in inner mitochondrial membrane fusion and remodelling of cristae and is crucial for the dynamic organization and regulation of mitochondria2. Mutations in OPA1 result in the dysregulation of the GTPase-mediated fusion process of the mitochondrial inner and outer membranes3. Here we used cryo-electron microscopy methods to solve helical structures of OPA1 assembled on lipid membrane tubes, in the presence and absence of nucleotide. These helical assemblies organize into densely packed protein rungs with minimal inter-rung connectivity, and exhibit nucleotide-dependent dimerization of the GTPase domains-a hallmark of the dynamin superfamily of proteins4. OPA1 also contains several unique secondary structures in the paddle domain that strengthen its membrane association, including membrane-inserting helices. The structural features identified in this study shed light on the effects of pathogenic point mutations on protein folding, inter-protein assembly and membrane interactions. Furthermore, mutations that disrupt the assembly interfaces and membrane binding of OPA1 cause mitochondrial fragmentation in cell-based assays, providing evidence of the biological relevance of these interactions.
Collapse
Affiliation(s)
- Sarah B Nyenhuis
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Xufeng Wu
- Light Microscopy Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Marie-Paule Strub
- Protein Expression Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Yang-In Yim
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Abigail E Stanton
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
- Molecular Biology Department, Princeton University, Princeton, NJ, USA
| | - Valentina Baena
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Zulfeqhar A Syed
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Bertram Canagarajah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - John A Hammer
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
11
|
PGC-1α participates in tumor chemoresistance by regulating glucose metabolism and mitochondrial function. Mol Cell Biochem 2023; 478:47-57. [PMID: 35713741 DOI: 10.1007/s11010-022-04477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/10/2022] [Indexed: 01/22/2023]
Abstract
Chemotherapy resistance is the main reason for the failure of cancer treatment. The mechanism of drug resistance is complex and diverse. In recent years, the role of glucose metabolism and mitochondrial function in cancer resistance has gathered considerable interest. The increase in metabolic plasticity of cancer cells' mitochondria and adaptive changes to the mitochondrial function are some of the mechanisms through which cancer cells resist chemotherapy. As a key molecule regulating the mitochondrial function and glucose metabolism, PGC-1α plays an indispensable role in cancer progression. However, the role of PGC-1α in chemotherapy resistance remains controversial. Here, we discuss the role of PGC-1α in glucose metabolism and mitochondrial function and present a comprehensive overview of PGC-1α in chemotherapy resistance.
Collapse
|
12
|
Duan J, Liu X, Shen S, Tan X, Wang Y, Wang L, Kang L, Wang K, Wei Z, Qi Y, Hu L, Xu B, Gu R. Trophoblast Stem-Cell-Derived Exosomes Alleviate Cardiotoxicity of Doxorubicin via Improving Mfn2-Mediated Mitochondrial Fusion. Cardiovasc Toxicol 2023; 23:23-31. [PMID: 36609664 PMCID: PMC9859904 DOI: 10.1007/s12012-022-09774-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/04/2022] [Indexed: 01/09/2023]
Abstract
Doxorubicin (Dox) is an anticancer drug widely used in tumor chemotherapy, but it has the side-effect of cardiotoxicity, which is closely related to mitochondrial damage. Mitochondrial dynamics is a quality control mechanism that usually helps to maintain a healthy mitochondrial pool. Trophoblast stem cell-derived exosomes (TSC-Exos) have been shown to protect cardiomyocytes from DOX-induced cardiotoxicity. To explore whether the cardioprotective role is mediated by the regulation of mitochondrial dynamic mechanism, TSC-Exos were isolated from human trophoblast stem cells by ultracentrifugation and characterized by Western blot and transmission electron microscopy. Cellular experiments of H9c2 cardiomyocytes co-cultured with Dox and TSC-Exos were performed in vitro to determine the levels of reactive oxygen species generation and apoptosis level. An animal model of heart failure was established by intraperitoneal injection of Dox in vivo, therapy mice were received additional intracardiac injection of TSC-Exos, then, the cardiac function, cardiomyocyte apoptosis and mitochondrial fragmentation were ameliorated. Histology assays suggest that Dox caused an increased tendency of mitochondrial fission, which was manifested by a decrease in the average size of mitochondria. By receiving TSC-Exos treatment, this effect was eliminated. In summary, these results suggest that TSC-Exos alleviate DOX-induced cardiotoxicity through antiapoptotic effect and improving mitochondrial fusion with an increase in Mfn2 expression. This study is the first to provide a potential new treatment scheme for the treatment of heart failure from the perspective of the relationship between TSC-Exos and mitochondrial dynamics.
Collapse
Affiliation(s)
- Junfeng Duan
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiaoli Liu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Song Shen
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Xi Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lian Wang
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lina Kang
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Kun Wang
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Zhonghai Wei
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yu Qi
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lei Hu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Biao Xu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China.
| | - Rong Gu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
13
|
Berberine mitigates hepatic insulin resistance by enhancing mitochondrial architecture via the SIRT1/Opa1 signalling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1464-1475. [PMID: 36269134 PMCID: PMC9827808 DOI: 10.3724/abbs.2022146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aberrant changes of fussion/fission-related proteins can trigger mitochondrial dynamics imbalance, which cause mitochondrial dysfunctions and result insulin resistance (IR). However, the relationship between the inner mitochondrial membrane fusion protein optic atrophy 1 (Opa1) and hepatic IR as well as the specific molecular mechanisms of signal transduction has not been fully elucidated. In this study, we explore whether abnormalities in the Opa1 cause hepatic IR and whether berberine (BBR) can prevent hepatic IR through the SIRT1/Opa1 signalling pathway. High-fat diet (HFD)-fed mice and db/db mice are used as animal models to study hepatic IR in vivo. IR, morphological changes, and mitochondrial injury of the liver are examined to explore the effects of BBR. SIRT1/Opa1 protein expression is determined to confirm whether the signalling pathway is damaged in the model animals and is involved in BBR treatment-mediated mitigation of hepatic IR. A palmitate (PA)-induced hepatocyte IR model is established in HepG2 cells in vitro. Opa1 silencing and SIRT1 overexpression are induced to verify whether Opa1 deficiency causes hepatocyte IR and whether SIRT1 improves this dysfunction. BBR treatment and SIRT1 silencing are employed to confirm that BBR can prevent hepatic IR by activating the SIRT1/Opa1 signalling pathway. Western blot analysis and JC-1 fluorescent staining results show that Opa1 deficiency causes an imbalance in mitochondrial fusion/fission and impairs insulin signalling in HepG2 cells. SIRT1 and BBR overexpression ameliorates PA-induced IR, increases Opa1, and improves mitochondrial function. SIRT1 silencing partly reverses the effects of BBR on HepG2 cells. SIRT1 and Opa1 expressions are downregulated in the animal models. BBR attenuates hepatic IR and enhances SIRT1/Opa1 signalling in db/db mice. In summary, Opa1 silencing-mediated mitochondrial fusion/fission imbalance could lead to hepatocyte IR. BBR may improve hepatic IR by regulating the SIRT1/Opa1 signalling pathway, and thus, it may be used to treat type-2 diabetes.
Collapse
|
14
|
Amorim R, Simões ICM, Teixeira J, Cagide F, Potes Y, Soares P, Carvalho A, Tavares LC, Benfeito S, Pereira SP, Simões RF, Karkucinska-Wieckowska A, Viegas I, Szymanska S, Dąbrowski M, Janikiewicz J, Cunha-Oliveira T, Dobrzyń A, Jones JG, Borges F, Wieckowski MR, Oliveira PJ. Mitochondria-targeted anti-oxidant AntiOxCIN 4 improved liver steatosis in Western diet-fed mice by preventing lipid accumulation due to upregulation of fatty acid oxidation, quality control mechanism and antioxidant defense systems. Redox Biol 2022; 55:102400. [PMID: 35863265 PMCID: PMC9304680 DOI: 10.1016/j.redox.2022.102400] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a health concern affecting 24% of the population worldwide. Although the pathophysiologic mechanisms underlying disease are not fully clarified, mitochondrial dysfunction and oxidative stress are key players in disease progression. Consequently, efforts to develop more efficient pharmacologic strategies targeting mitochondria for NAFLD prevention/treatment are underway. The conjugation of caffeic acid anti-oxidant moiety with an alkyl linker and a triphenylphosphonium cation (TPP+), guided by structure-activity relationships, led to the development of a mitochondria-targeted anti-oxidant (AntiOxCIN4) with remarkable anti-oxidant properties. Recently, we described that AntiOxCIN4 improved mitochondrial function, upregulated anti-oxidant defense systems, and cellular quality control mechanisms (mitophagy/autophagy) via activation of the Nrf2/Keap1 pathway, preventing fatty acid-induced cell damage. Despite the data obtained, AntiOxCIN4 effects on cellular and mitochondrial energy metabolism in vivo were not studied. In the present work, we proposed that AntiOxCIN4 (2.5 mg/day/animal) may prevent non-alcoholic fatty liver (NAFL) phenotype development in a C57BL/6J mice fed with 30% high-fat, 30% high-sucrose diet for 16 weeks. HepG2 cells treated with AntiOxCIN4 (100 μM, 48 h) before the exposure to supraphysiologic free fatty acids (FFAs) (250 μM, 24 h) were used for complementary studies. AntiOxCIN4 decreased body (by 43%), liver weight (by 39%), and plasma hepatocyte damage markers in WD-fed mice. Hepatic-related parameters associated with a reduction of fat liver accumulation (by 600%) and the remodeling of fatty acyl chain composition compared with the WD-fed group were improved. Data from human HepG2 cells confirmed that a reduction of lipid droplets size and number can be a result from AntiOxCIN4-induced stimulation of fatty acid oxidation and mitochondrial OXPHOS remodeling. In WD-fed mice, AntiOxCIN4 also induced a hepatic metabolism remodeling by upregulating mitochondrial OXPHOS, anti-oxidant defense system and phospholipid membrane composition, which is mediated by the PGC-1α-SIRT3 axis. AntiOxCIN4 prevented lipid accumulation-driven autophagic flux impairment, by increasing lysosomal proteolytic capacity. AntiOxCIN4 improved NAFL phenotype of WD-fed mice, via three main mechanisms: a) increase mitochondrial function (fatty acid oxidation); b) stimulation anti-oxidant defense system (enzymatic and non-enzymatic) and; c) prevent the impairment in autophagy. Together, the findings support the potential use of AntiOxCIN4 in the prevention/treatment of NAFLD.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789, Coimbra, Portugal
| | - Inês C M Simões
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - José Teixeira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Fernando Cagide
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Pedro Soares
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Adriana Carvalho
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ludgero C Tavares
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, 3020-210, Coimbra, Portugal
| | - Sofia Benfeito
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rui F Simões
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789, Coimbra, Portugal
| | | | - Ivan Viegas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sylwia Szymanska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Michał Dąbrowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal.
| | - Mariusz R Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
15
|
Gupta S, Sachan A, Ravi Ram K. Estrogen-related receptor is critical for testicular mitochondrial homeostasis and sperm motility: a Drosophila-based study. F&S SCIENCE 2022; 3:217-227. [PMID: 35977802 DOI: 10.1016/j.xfss.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To study the role of estrogen-related receptors (ERRs) in testicular function, with particular emphasis on mitochondrial homeostasis, testicular steroidogenesis, and sperm motility using Drosophila as a model. DESIGN Experimental study. SETTING Academic research laboratory. ANIMAL(S) Wild-type and transgenic strains of Drosophila melanogaster. INTERVENTION(S) Using a ribonucleic acid interference-based approach, ERR was knocked down specifically in the testes to generate Drosophila males with reduced ERR levels in their testes. Genetically matched sibling males without the knockdown formed the controls. MAIN OUTCOME MEASURE(S) Analysis of the testicular mitochondrial structure and function in relation to energy production, steroidogenesis, and sperm motility in Drosophila. RESULT(S) Depletion of ERR affects mitochondrial homeostasis (biogenesis, fission, fusion, mitophagy, and transport) and oxidative respiration in the testes. Consequently, ERR knockdown testes have significantly reduced mitochondrial size, mass, and depleted adenosine triphosphate levels resulting in testicular oxidative stress. Further, Halloween genes, associated with steroidogenesis in Drosophila, are misregulated in ERR knockdown testes, and knockdown of some of the steroidogenic genes in a testis-specific manner results in significantly reduced fertility. In addition, sperm from ERR knockdown testes have significantly reduced levels of glucose transporter, Na+K+ ATPase, Dynein heavy chain, and adenosine triphosphate-5α synthase essential for sperm function. Corroborating this, sperm from ERR knockdown males are significantly less motile compared with control. CONCLUSION(S) The ERR is crucial for meeting the cellular energy requirements of the testes and the generation of normal motile sperm and hormone synthesis/secretion in the testes. To our knowledge, this is the first report implicating ERR in these ultimate functions of the testes. These findings can potentially contribute to the etiologic understanding of asthenozoospermia or infertility at large in men.
Collapse
Affiliation(s)
- Snigdha Gupta
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Asthika Sachan
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Kristipati Ravi Ram
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
16
|
Su X, Zhou M, Li Y, Zhang J, An N, Yang F, Zhang G, Yuan C, Chen H, Wu H, Xing Y. Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics. Biomed Pharmacother 2022; 149:112893. [PMID: 35366532 DOI: 10.1016/j.biopha.2022.112893] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with ischemic heart disease receiving reperfusion therapy still need to face left ventricular remodeling and heart failure after myocardial infarction. Reperfusion itself paradoxically leads to further cardiomyocyte death and systolic dysfunction. Ischemia/reperfusion (I/R) injury can eliminate the benefits of reperfusion therapy in patients and causes secondary myocardial injury. Mitochondrial dysfunction and structural disorder are the basic driving force of I/R injury. We summarized the basic relationship and potential mechanisms of mitochondrial injury in the development of I/R injury. Subsequently, this review summarized the natural products (NPs) that have been proven to targeting mitochondrial therapeutic effects during I/R injury in recent years and related cellular signal transduction pathways. We found that these NPs mainly protected the structural integrity of mitochondria and improve dysfunction, such as reducing mitochondrial division and fusion abnormalities, improving mitochondrial Ca2+ overload and inhibiting reactive oxygen species overproduction, thereby playing a role in protecting cardiomyocytes during I/R injury. This data would deepen the understanding of I/R-induced mitochondrial pathological process and suggested that NPs are expected to be transformed into potential therapies targeting mitochondria.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingyang Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yingjian Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jianzhen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chao Yuan
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Hongjin Wu
- Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing 100191, China.
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
17
|
Funda J, Villena JA, Bardova K, Adamcova K, Irodenko I, Flachs P, Jedlickova I, Haasova E, Rossmeisl M, Kopecky J, Janovska P. Adipose tissue-specific ablation of PGC-1β impairs thermogenesis in brown fat. Dis Model Mech 2022; 15:dmm049223. [PMID: 35466996 PMCID: PMC9066513 DOI: 10.1242/dmm.049223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Impaired thermogenesis observed in mice with whole-body ablation of peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β; officially known as PPARGC1B) may result from impaired brown fat (brown adipose tissue; BAT) function, but other mechanism(s) could be involved. Here, using adipose-specific PGC-1β knockout mice (PGC-1β-AT-KO mice) we aimed to learn whether specific PGC-1β ablation in adipocytes is sufficient to drive cold sensitivity. Indeed, we found that warm-adapted (30°C) mutant mice were relatively sensitive to acute cold exposure (6°C). When these mice were subjected to cold exposure for 7 days (7-day-CE), adrenergic stimulation of their metabolism was impaired, despite similar levels of thermogenic uncoupling protein 1 in BAT in PGC-1β-AT-KO and wild-type mice. Gene expression in BAT of mutant mice suggested a compensatory increase in lipid metabolism to counteract the thermogenic defect. Interestingly, a reduced number of contacts between mitochondria and lipid droplets associated with low levels of L-form of optic atrophy 1 was found in BAT of PGC-1β-AT-KO mice. These genotypic differences were observed in warm-adapted mutant mice, but they were partially masked by 7-day-CE. Collectively, our results suggest a role for PGC-1β in controlling BAT lipid metabolism and thermogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jiří Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Josep A. Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Illaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Pavel Flachs
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Ivana Jedlickova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Eliska Haasova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
18
|
Cheng X, Zhou P, Weng W, Sun Z, Liu H, Chen Y, Cai Y, Yu X, Wang T, Shao M, Yi W, Yi T, Sun H, Han P. Artemether attenuates renal tubular injury by targeting mitochondria in adriamycin nephropathy mice. Am J Transl Res 2022; 14:2002-2012. [PMID: 35422916 PMCID: PMC8991145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Chronic kidney disease (CKD) is complex and current treatment remains limited. As we know, glomerular injury plays a dominant role in kidney disease progression. However, accumulating evidence demonstrated that renal tubules, rather than being victims or bystanders, are major initiators in renal fibrosis progression. Renal tubules are rich in mitochondria and mitochondrial dysfunction may participate in renal tubular phenotypic changes and ultimately promote renal fibrosis. Previous studies have proved that artemether displayed renal protective effects, but the mechanisms remain unclear. In this experiment, we showed that artemether reduced urinary protein/creatinine ratio and attenuated renal tubular injury. Both in vivo and in vitro results indicated that artemether could restore renal tubular phenotypic alterations. Meanwhile, the unbalanced expressions of Bax and Bcl-xL in renal tubules were restored by artemether. In addition, artemether also regulated mitochondrial pyruvate metabolism, increased mitochondrial biogenesis, and improved mitochondrial function. Taken together, this study suggested that artemether could attenuate renal tubular injury by regulating mitochondrial biogenesis and function. It has great potential to be translated to the clinic as a therapeutic agent for treating kidney diseases, especially those associated with renal tubular injury.
Collapse
Affiliation(s)
- Xinyuan Cheng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Peng Zhou
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Wenci Weng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Zhijian Sun
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Honghong Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineShenzhen, Guangdong, China
| | - Yinghui Chen
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Yuchun Cai
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Xuewen Yu
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Taifen Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Mumin Shao
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Wuyong Yi
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Tiegang Yi
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Huili Sun
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Pengxun Han
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| |
Collapse
|
19
|
Yoneda M, Aklima J, Ohsawa I, Ohta Y. Effects of proton pumping on the structural rigidity of cristae in mitochondria. Arch Biochem Biophys 2022; 720:109172. [PMID: 35276212 DOI: 10.1016/j.abb.2022.109172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Mitochondria change their morphology and inner membrane structure depending on their activity. Since mitochondrial activity also depends on their structure, it is important to elucidate the interrelationship between the activity and structure of mitochondria. However, the mechanism by which mitochondrial activity affects the structure of cristae, the folded structure of the inner membrane, is not well understood. In this study, the effect of the mitochondrial activity on the cristae structure was investigated by examining the structural rigidity of cristae. Taking advantage of the fact that unfolding of cristae induces mitochondrial swelling, we investigated the relationship between mitochondrial activity and the susceptibility to swelling. The swelling of individual isolated mitochondria exposed to a hypotonic solution was observed with an optical microscope. The presence of respiratory substrates (malate and glutamate) increased the percentage of mitochondria that underwent swelling, and the further addition of rotenone or KCN (inhibitors of proton pumps) reversed the increase. In the absence of respiratory substrates, acidification of the buffer surrounding the mitochondria also increased the percentage of swollen mitochondria. These observations suggest that acidification of the outer surface of inner membranes, especially intracristal space, by proton translocation from the matrix to the intracristal space, decreases the structural rigidity of the cristae. This interpretation was verified by the observation that ADP or CCCP, which induces proton re-entry to the matrix, suppressed the mitochondrial swelling in the presence of respiratory substrates. The addition of CCCP to the cells induced a morphological change in mitochondria from an initial elongated structure to a largely curved structure at pH 7.4, but there were no morphological changes when the pH of the cytosol dropped to 6.2. These results suggest that a low pH in the intracristal space may be helpful in maintaining the elongated structure of mitochondria. The present study shows that proton pumping by the electron transfer chain is the mechanism underlying mitochondrial morphology and the flexibility of cristae structure.
Collapse
Affiliation(s)
- Mayu Yoneda
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Jannatul Aklima
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan; Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0015, Japan
| | - Yoshihiro Ohta
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
20
|
Cheng M, Yu H, Kong Q, Wang B, Shen L, Dong D, Sun L. The Mitochondrial PHB2/OMA1/DELE1 Pathway Cooperates with Endoplasmic Reticulum Stress to Facilitate the Response to Chemotherapeutics in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms23031320. [PMID: 35163244 PMCID: PMC8835964 DOI: 10.3390/ijms23031320] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Interactions between the mitochondrial inner and outer membranes and between mitochondria and other organelles closely correlates with the sensitivity of ovarian cancer to cisplatin and other chemotherapeutic drugs. However, the underlying mechanism remains unclear. Recently, the mitochondrial protease OMA1, which regulates internal and external signals in mitochondria by cleaving mitochondrial proteins, was shown to be related to tumor progression. Therefore, we evaluated the effect of OMA1 on the response to chemotherapeutics in ovarian cancer cells and the mouse subcutaneous tumor model. We found that OMA1 activation increased ovarian cancer sensitivity to cisplatin in vivo and in vitro. Mechanistically, in ovarian cancer, OMA1 cleaved optic atrophy 1 (OPA1), leading to mitochondrial inner membrane cristae remodeling. Simultaneously, OMA1 induced DELE1 cleavage and its cytoplasmic interaction with EIF2AK1. We also demonstrated that EIF2AK1 cooperated with the ER stress sensor EIF2AK3 to amplify the EIF2S1/ATF4 signal, resulting in the rupture of the mitochondrial outer membrane. Knockdown of OMA1 attenuated these activities and reversed apoptosis. Additionally, we found that OMA1 protease activity was regulated by the prohibitin 2 (PHB2)/stomatin-like protein 2 (STOML2) complex. Collectively, OMA1 coordinates the mitochondrial inner and outer membranes to induce ovarian cancer cell death. Thus, activating OMA1 may be a novel treatment strategy for ovarian cancer.
Collapse
|
21
|
Wang C, Qi C, Liu M, Wang L, Cheng G, Li L, Xing Y, Zhao X, Liu J. Protective effects of agrimonolide on hypoxia-induced H9c2 cell injury by maintaining mitochondrial homeostasis. J Cell Biochem 2021; 123:306-321. [PMID: 34724244 DOI: 10.1002/jcb.30169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte death caused by hypoxia is one of the main causes of myocardial infarction or heart failure, and mitochondria play an important role in this process. Agrimonolide (AM) is a monomeric component extracted from Agrimonia pilosa L. and has antioxidant, antitumor, and anti-inflammatory effects. This study aimed to investigate the role and mechanism of AM in improving hypoxia-induced H9c2 cell damage. The results showed that low AM concentrations promote H9c2 cell proliferation and increase cellular ATP content. Transcriptome sequencing showed that AM induces differential expression of genes in H9c2 cells. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that these genes were concentrated in mitochondrial function. Subsequent experiments confirmed that AM regulates hypoxia-induced cell cycle arrest. AM inhibited the rate of apoptosis by regulating the expression of apoptosis-related proteins, reducing the level of cleaved Caspase 3 and Bax, and increasing the level of Bcl2, thereby protecting H9c2 cells from hypoxia-induced apoptosis. AM restored the mitochondrial membrane potential, inhibited the generation of ROS, maintained the normal shape of the mitochondria, improved the level of the mitochondrial functional proteins OPA1, MFN1, MFN2, Tom20, and increased the level of ATP. In conclusion, AM protects H9c2 cells from hypoxia-induced cell damage.
Collapse
Affiliation(s)
- Cheng Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Changxi Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Lumei Wang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Liping Li
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuxiao Xing
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaona Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
22
|
Kumar S, Ashraf R, C K A. Mitochondrial dynamics regulators: implications for therapeutic intervention in cancer. Cell Biol Toxicol 2021; 38:377-406. [PMID: 34661828 DOI: 10.1007/s10565-021-09662-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Regardless of the recent advances in therapeutic developments, cancer is still among the primary causes of death globally, indicating the need for alternative therapeutic strategies. Mitochondria, a dynamic organelle, continuously undergo the fusion and fission processes to meet cell requirements. The balanced fission and fusion processes, referred to as mitochondrial dynamics, coordinate mitochondrial shape, size, number, energy metabolism, cell cycle, mitophagy, and apoptosis. An imbalance between these opposing events alters mitochondWangrial dynamics, affects the overall mitochondrial shape, and deregulates mitochondrial function. Emerging evidence indicates that alteration of mitochondrial dynamics contributes to various aspects of tumorigenesis and cancer progression. Therefore, targeting the mitochondrial dynamics regulator could be a potential therapeutic approach for cancer treatment. This review will address the role of imbalanced mitochondrial dynamics in mitochondrial dysfunction during cancer progression. We will outline the clinical significance of mitochondrial dynamics regulators in various cancer types with recent updates in cancer stemness and chemoresistance and its therapeutic potential and clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India.
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| | - Aparna C K
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
23
|
Parry HA, Randall RB, Hyatt HW, Hood WR, Kavazis AN. Short and long-term effect of reproduction on mitochondrial dynamics and autophagy in rats. Heliyon 2021; 7:e08070. [PMID: 34622072 PMCID: PMC8479403 DOI: 10.1016/j.heliyon.2021.e08070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/27/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
We evaluated mitochondrial dynamics and autophagy by investigating the acute and long-term changes in the liver and skeletal muscle of rats in multiple reproductive stages. A total of 48 rats were used. Rats were randomly assigned to three groups (n = 16 per group): nonreproductive females; females that became pregnant, gave birth, but had their pups removed at birth, and thus, did not lactate; and females that experienced pregnancy, gave birth, and were allowed to lactate. Each group was further divided into two-time subgroups (n = 8 per subgroup) and data were collected at a time-point corresponding to 1) peak lactation (day 14 of lactation) in the lactating animals (4 months of age) and 2) 15 weeks after parturition (12 weeks post-weaning in lactating animals; 7 months of age). Levels of several proteins involved in mitochondrial dynamics and the autophagy system were measured in the liver and skeletal muscle. Beclin1 protein levels in the liver were higher in non-lactating rats two weeks after parturition, while Beclin1 protein levels were highest in 7-month-old animals that had previously experienced a standard reproductive event that included pregnancy and a full 3 week of lactation. These animals also exhibited higher protein levels of the mitochondrial fusion marker Mfn2 in the liver. In skeletal muscle, we also observed increased protein levels of the mitochondrial fission marker DRP1 in non-lactating animals compared to animals that lactated. In summary, our data provide insightful information on the mechanisms that influence liver and skeletal muscle remodeling in response to the metabolic challenges of reproduction, and lactation in particular. Autophagy remodeling and mitochondrial fusion seem to coincide with liver mass size during the lactation stage of reproduction. Our findings highlight the complex changes that occur in the liver and skeletal muscle during reproduction, and highlights the remarkable plasticity required during this demanding metabolic feat.
Collapse
Affiliation(s)
| | - Ryleigh B. Randall
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - Hayden W. Hyatt
- School of Kinesiology, Auburn University, Auburn, AL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Wendy R. Hood
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Andreas N. Kavazis
- School of Kinesiology, Auburn University, Auburn, AL, USA
- Corresponding author.
| |
Collapse
|
24
|
Méndez-López I, Sancho-Bielsa FJ, Engel T, García AG, Padín JF. Progressive Mitochondrial SOD1 G93A Accumulation Causes Severe Structural, Metabolic and Functional Aberrations through OPA1 Down-Regulation in a Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22158194. [PMID: 34360957 PMCID: PMC8347639 DOI: 10.3390/ijms22158194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023] Open
Abstract
In recent years, the “non-autonomous motor neuron death” hypothesis has become more consolidated behind amyotrophic lateral sclerosis (ALS). It postulates that cells other than motor neurons participate in the pathology. In fact, the involvement of the autonomic nervous system is fundamental since patients die of sudden death when they become unable to compensate for cardiorespiratory arrest. Mitochondria are thought to play a fundamental role in the physiopathology of ALS, as they are compromised in multiple ALS models in different cell types, and it also occurs in other neurodegenerative diseases. Our study aimed to uncover mitochondrial alterations in the sympathoadrenal system of a mouse model of ALS, from a structural, bioenergetic and functional perspective during disease instauration. We studied the adrenal chromaffin cell from mutant SOD1G93A mouse at pre-symptomatic and symptomatic stages. The mitochondrial accumulation of the mutated SOD1G93A protein and the down-regulation of optic atrophy protein-1 (OPA1) provoke mitochondrial ultrastructure alterations prior to the onset of clinical symptoms. These changes affect mitochondrial fusion dynamics, triggering mitochondrial maturation impairment and cristae swelling, with increased size of cristae junctions. The functional consequences are a loss of mitochondrial membrane potential and changes in the bioenergetics profile, with reduced maximal respiration and spare respiratory capacity of mitochondria, as well as enhanced production of reactive oxygen species. This study identifies mitochondrial dynamics regulator OPA1 as an interesting therapeutic target in ALS. Additionally, our findings in the adrenal medulla gland from presymptomatic stages highlight the relevance of sympathetic impairment in this disease. Specifically, we show new SOD1G93A toxicity pathways affecting cellular energy metabolism in non-motor neurons, which offer a possible link between cell specific metabolic phenotype and the progression of ALS.
Collapse
Affiliation(s)
- Iago Méndez-López
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (I.M.-L.); (A.G.G.)
| | - Francisco J. Sancho-Bielsa
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha (UCLM), 13005 Ciudad Real, Spain;
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Antonio G. García
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (I.M.-L.); (A.G.G.)
| | - Juan Fernando Padín
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (I.M.-L.); (A.G.G.)
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha (UCLM), 13005 Ciudad Real, Spain;
- Correspondence:
| |
Collapse
|
25
|
Gu H, Yang K, Wu Q, Shen Z, Li X, Sun C. A link between protein acetylation and mitochondrial dynamics under energy metabolism: A comprehensive overview. J Cell Physiol 2021; 236:7926-7937. [PMID: 34101176 DOI: 10.1002/jcp.30461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cells adjust mitochondrial morphologies to coordinate between the cellular demand for energy and the availability of resources. Mitochondrial morphology is regulated by the balance between two counteracting mitochondrial processes of fusion and fission. Fission and fusion are dynamic and reversible processes that depend on the coordination of a number of proteins and are primarily regulated by posttranslational modifications. In the mitochondria, more than 20% of proteins are acetylated in proteomic surveys, partly involved in the dynamic regulation of mitochondrial fusion and fission. This article focuses on the molecular mechanism of the mitochondrial dynamics of fusion and fission, and summarizes the related mechanisms and targets of mitochondrial protein acetylation to regulate the mitochondrial dynamics of fusion and fission in energy metabolism.
Collapse
Affiliation(s)
- Huihui Gu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Pathophysiology, Qinghai University Medical College, Xining, Qinghai, China
| | - Zhentong Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Gottlieb RA, Piplani H, Sin J, Sawaged S, Hamid SM, Taylor DJ, de Freitas Germano J. At the heart of mitochondrial quality control: many roads to the top. Cell Mol Life Sci 2021; 78:3791-3801. [PMID: 33544154 PMCID: PMC8106602 DOI: 10.1007/s00018-021-03772-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Mitochondrial quality control depends upon selective elimination of damaged mitochondria, replacement by mitochondrial biogenesis, redistribution of mitochondrial components across the network by fusion, and segregation of damaged mitochondria by fission prior to mitophagy. In this review, we focus on mitochondrial dynamics (fusion/fission), mitophagy, and other mechanisms supporting mitochondrial quality control including maintenance of mtDNA and the mitochondrial unfolded protein response, particularly in the context of the heart.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
| | - Honit Piplani
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Jon Sin
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Savannah Sawaged
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Syed M Hamid
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - David J Taylor
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Juliana de Freitas Germano
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| |
Collapse
|
27
|
Machine learning-based classification of mitochondrial morphology in primary neurons and brain. Sci Rep 2021; 11:5133. [PMID: 33664336 PMCID: PMC7933342 DOI: 10.1038/s41598-021-84528-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
The mitochondrial network continually undergoes events of fission and fusion. Under physiologic conditions, the network is in equilibrium and is characterized by the presence of both elongated and punctate mitochondria. However, this balanced, homeostatic mitochondrial profile can change morphologic distribution in response to various stressors. Therefore, it is imperative to develop a method that robustly measures mitochondrial morphology with high accuracy. Here, we developed a semi-automated image analysis pipeline for the quantitation of mitochondrial morphology for both in vitro and in vivo applications. The image analysis pipeline was generated and validated utilizing images of primary cortical neurons from transgenic mice, allowing genetic ablation of key components of mitochondrial dynamics. This analysis pipeline was further extended to evaluate mitochondrial morphology in vivo through immunolabeling of brain sections as well as serial block-face scanning electron microscopy. These data demonstrate a highly specific and sensitive method that accurately classifies distinct physiological and pathological mitochondrial morphologies. Furthermore, this workflow employs the use of readily available, free open-source software designed for high throughput image processing, segmentation, and analysis that is customizable to various biological models.
Collapse
|
28
|
Pila-Castellanos I, Molino D, McKellar J, Lines L, Da Graca J, Tauziet M, Chanteloup L, Mikaelian I, Meyniel-Schicklin L, Codogno P, Vonderscher J, Delevoye C, Moncorgé O, Meldrum E, Goujon C, Morel E, de Chassey B. Mitochondrial morphodynamics alteration induced by influenza virus infection as a new antiviral strategy. PLoS Pathog 2021; 17:e1009340. [PMID: 33596274 PMCID: PMC7920353 DOI: 10.1371/journal.ppat.1009340] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/01/2021] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Influenza virus infections are major public health threats due to their high rates of morbidity and mortality. Upon influenza virus entry, host cells experience modifications of endomembranes, including those used for virus trafficking and replication. Here we report that influenza virus infection modifies mitochondrial morphodynamics by promoting mitochondria elongation and altering endoplasmic reticulum-mitochondria tethering in host cells. Expression of the viral RNA recapitulates these modifications inside cells. Virus induced mitochondria hyper-elongation was promoted by fission associated protein DRP1 relocalization to the cytosol, enhancing a pro-fusion status. We show that altering mitochondrial hyper-fusion with Mito-C, a novel pro-fission compound, not only restores mitochondrial morphodynamics and endoplasmic reticulum-mitochondria contact sites but also dramatically reduces influenza replication. Finally, we demonstrate that the observed Mito-C antiviral property is directly connected with the innate immunity signaling RIG-I complex at mitochondria. Our data highlight the importance of a functional interchange between mitochondrial morphodynamics and innate immunity machineries in the context of influenza viral infection. Influenza virus infections cause significant diseases and socio-economic burden. The current therapeutic arsenal is restricted to drugs that essentially target two proteins of the virus. In this study, we investigated endomembrane modifications inside cells following influenza virus infection. We find remarkable elongation of mitochondria associated with a reduction in the number of contact sites between mitochondria and endoplasmic reticulum, platforms known to be critical for innate immunity regulation. We demonstrated that the sole expression of a fragment of the viral genome is sufficient to provoke these modifications and we identified how the main drivers of the mitochondria fusion/fission machinery behave to favor such an elongated state. We introduce potential application of Mito-C, a new drug that inhibits influenza virus replication by counteracting these membrane modifications. We finally demonstrated that the functional result of this action is a booster of the innate immune response of the cell. Thus, Mito-C has a broad spectrum potential to fight other RNA viruses, described or expected to induce similar membrane modifications (eg coronaviruses, flaviviruses, etc.).
Collapse
Affiliation(s)
- Irene Pila-Castellanos
- ENYO-Pharma, Lyon, France
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Diana Molino
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR 9004—CNRS, Université de Montpellier, Montpellier, France
| | | | - Juliane Da Graca
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Marine Tauziet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR 9004—CNRS, Université de Montpellier, Montpellier, France
| | | | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | | | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | | | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Olivier Moncorgé
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | | | - Caroline Goujon
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
- * E-mail: (EM); (BC)
| | | |
Collapse
|
29
|
Kretzschmar T, Wu JMF, Schulze PC. Mitochondrial Homeostasis Mediates Lipotoxicity in the Failing Myocardium. Int J Mol Sci 2021; 22:1498. [PMID: 33540894 PMCID: PMC7867320 DOI: 10.3390/ijms22031498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure remains the most common cause of death in the industrialized world. In spite of new therapeutic interventions that are constantly being developed, it is still not possible to completely protect against heart failure development and progression. This shows how much more research is necessary to understand the underlying mechanisms of this process. In this review, we give a detailed overview of the contribution of impaired mitochondrial dynamics and energy homeostasis during heart failure progression. In particular, we focus on the regulation of fatty acid metabolism and the effects of fatty acid accumulation on mitochondrial structural and functional homeostasis.
Collapse
Affiliation(s)
| | | | - P. Christian Schulze
- Department of Internal Medicine I, University Hospital Jena, 07747 Jena, Thüringen, Germany; (T.K.); (J.M.F.W.)
| |
Collapse
|
30
|
Defective mitophagy in Alzheimer's disease. Ageing Res Rev 2020; 64:101191. [PMID: 33022416 DOI: 10.1016/j.arr.2020.101191] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive, mental illness without cure. Several years of intense research on postmortem AD brains, cell and mouse models of AD have revealed that multiple cellular changes are involved in the disease process, including mitochondrial abnormalities, synaptic damage, and glial/astrocytic activation, in addition to age-dependent accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). Synaptic damage and mitochondrial dysfunction are early cellular changes in the disease process. Healthy and functionally active mitochondria are essential for cellular functioning. Dysfunctional mitochondria play a central role in aging and AD. Mitophagy is a cellular process whereby damaged mitochondria are selectively removed from cell and mitochondrial quality and biogenesis. Mitophagy impairments cause the progressive accumulation of defective organelle and damaged mitochondria in cells. In AD, increased levels of Aβ and p-tau can induce reactive oxygen species (ROS) production, causing excessive fragmentation of mitochondria and promoting defective mitophagy. The current article discusses the latest developments of mitochondrial research and also highlights multiple types of mitophagy, including Aβ and p-tau-induced mitophagy, stress-induced mitophagy, receptor-mediated mitophagy, ubiquitin mediated mitophagy and basal mitophagy. This article also discusses the physiological states of mitochondria, including fission-fusion balance, Ca2+ transport, and mitochondrial transport in normal and diseased conditions. Our article summarizes current therapeutic interventions, like chemical or natural mitophagy enhancers, that influence mitophagy in AD. Our article discusses whether a partial reduction of Drp1 can be a mitophagy enhancer and a therapeutic target for mitophagy in AD and other neurological diseases.
Collapse
|
31
|
Sun C, Wu X, Bai HX, Wang C, Liu Z, Yang C, Lu Y, Jiang P. OPA1 haploinsufficiency due to a novel splicing variant resulting in mitochondrial dysfunction without mitochondrial DNA depletion. Ophthalmic Genet 2020; 42:45-52. [PMID: 33251885 DOI: 10.1080/13816810.2020.1849313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: To identify and investigate the effects of a novel splicing variant, c.1444-2A>C of OPA1, on its transcript, translation, and mitochondrial function, which was found in an 8-year-old patient with dominantly inherited optic atrophy (DOA). Materials and Methods: The clinical evaluations were performed at the Eye Center. Lymphoblast cell lines were generated from the patient, mother, and a normal control with the same haplotype of mitochondrial genome. The novel variant was confirmed by Sanger sequencing. The splicing alteration of cDNA was checked by both Sanger sequencing and agarose gel. OPA1 expression was carried out by RT-PCR and Western blotting. Transmission electron microscopy was used for mitochondrial morphology. Mitochondrial functions, including the rates of oxygen consumption, ATP generation, ROS product and membrane potential were assayed in lymphoblast cells. Results: The novel OPA1 splicing variant, c.1444-2A>C, led to a deletion of the 15th exon in mRNA transcript. Approximately 50% reduction of mRNA and protein expression was present in mutant cells as compared with controls. No marked depletion of mtDNA nor mitochondrial mass was caused by the splicing variant. However, defects that the impaired capacity of OXPHOS, reduced ATP generation, increased ROS and decreased membrane potential were observed in the mutant cells, which promoted a ubiquitin-binding mitophagy instead of apoptosis. Conclusions: The novel splicing variant, c.1444-2A>C resulted in OPA1 haploinsufficiency effect on its expression and mitochondrial function without mtDNA depletion. Our findings may provide new insights into the understanding of pathophysiology of DOA.
Collapse
Affiliation(s)
- Chuanbin Sun
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | - Xiaoyu Wu
- Division of Medical Genetics and Genomics, the Children's Hospitals, Zhejiang University School of Medicine, National Clinical Research Center for Child Health , Hangzhou, China
| | - Hai-Xia Bai
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | - Chenghui Wang
- Division of Medical Genetics and Genomics, the Children's Hospitals, Zhejiang University School of Medicine, National Clinical Research Center for Child Health , Hangzhou, China
| | - Zhe Liu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital , Hangzhou, China
| | - Chenxi Yang
- Division of Medical Genetics and Genomics, the Children's Hospitals, Zhejiang University School of Medicine, National Clinical Research Center for Child Health , Hangzhou, China
| | - Yijun Lu
- Division of Medical Genetics and Genomics, the Children's Hospitals, Zhejiang University School of Medicine, National Clinical Research Center for Child Health , Hangzhou, China
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, the Children's Hospitals, Zhejiang University School of Medicine, National Clinical Research Center for Child Health , Hangzhou, China
| |
Collapse
|
32
|
Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch Biochem Biophys 2020; 702:108698. [PMID: 33259796 DOI: 10.1016/j.abb.2020.108698] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
In addition to ATP synthesis, mitochondria are highly dynamic organelles that modulate apoptosis, ferroptosis, and inflammasome activation. Through executing these varied functions, the mitochondria play critical roles in the development and progression of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Friedreich ataxia, among others. Impaired mitochondrial biogenesis and abnormal mitochondrial dynamics contribute to mitochondrial dysfunction in these diseases. Additionally, dysfunctional mitochondria play critical roles in signaling for both inflammasome activation and ferroptosis. Therapeutics are being developed to circumvent inflammasome activation and ferroptosis in dysfunctional mitochondria. Targeting these aspects of mitochondrial dysfunction may present viable therapeutic strategies for combatting the neurodegenerative diseases. This review aims to summarize the role of the mitochondria in the development and progression of neurodegenerative diseases and to present current therapeutic approaches that target mitochondrial dysfunction in these diseases.
Collapse
|
33
|
Maloney DM, Chadderton N, Millington-Ward S, Palfi A, Shortall C, O'Byrne JJ, Cassidy L, Keegan D, Humphries P, Kenna P, Farrar GJ. Optimized OPA1 Isoforms 1 and 7 Provide Therapeutic Benefit in Models of Mitochondrial Dysfunction. Front Neurosci 2020; 14:571479. [PMID: 33324145 PMCID: PMC7726421 DOI: 10.3389/fnins.2020.571479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Optic Atrophy 1 (OPA1) is a mitochondrially targeted GTPase that plays a pivotal role in mitochondrial health, with mutations causing severe mitochondrial dysfunction and typically associated with Dominant Optic Atrophy (DOA), a progressive blinding disease involving retinal ganglion cell loss and optic nerve damage. In the current study, we investigate the use of codon-optimized versions of OPA1 isoform 1 and 7 as potential therapeutic interventions in a range of in vitro and in vivo models of mitochondrial dysfunction. We demonstrate that both isoforms perform equally well in ameliorating mitochondrial dysfunction in OPA1 knockout mouse embryonic fibroblast cells but that OPA1 expression levels require tight regulation for optimal benefit. Of note, we demonstrate for the first time that both OPA1 isoform 1 and 7 can be used independently to protect spatial visual function in a murine model of retinal ganglion cell degeneration caused by mitochondrial dysfunction, as well as providing benefit to mitochondrial bioenergetics in DOA patient derived fibroblast cells. These results highlight the potential value of OPA1-based gene therapy interventions.
Collapse
Affiliation(s)
- Daniel M Maloney
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Naomi Chadderton
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | | | - Arpad Palfi
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Ciara Shortall
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - James J O'Byrne
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Lorraine Cassidy
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - David Keegan
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Peter Humphries
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Paul Kenna
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland.,The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Gwyneth Jane Farrar
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Calenduloside E Ameliorates Myocardial Ischemia-Reperfusion Injury through Regulation of AMPK and Mitochondrial OPA1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2415269. [PMID: 32934760 PMCID: PMC7479459 DOI: 10.1155/2020/2415269] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Calenduloside E (CE) is a natural triterpenoid saponin isolated from Aralia elata (Miq.) Seem., a well-known traditional Chinese medicine. Our previous studies have shown that CE exerts cardiovascular protective effects both in vivo and in vitro. However, its role in myocardial ischemia/reperfusion injury (MIRI) and the mechanism involved are currently unknown. Mitochondrial dynamics play a key role in MIRI. This study investigated the effects of CE on mitochondrial dynamics and the signaling pathways involved in myocardial ischemia/reperfusion (MI/R). The MI/R rat model and the hypoxia/reoxygenation (H/R) cardiomyocyte model were established in this study. CE exerted significant cardioprotective effects in vivo and in vitro by improving cardiac function, decreasing myocardial infarct size, increasing cardiomyocyte viability, and inhibiting cardiomyocyte apoptosis associated with MI/R. Mechanistically, CE restored mitochondrial homeostasis against MI/R injury through improved mitochondrial ultrastructure, enhanced ATP content and mitochondrial membrane potential, and reduced mitochondrial permeability transition pore (MPTP) opening, while promoting mitochondrial fusion and preventing mitochondrial fission. However, genetic silencing of OPA1 by siRNA abolished the beneficial effects of CE on cardiomyocyte survival and mitochondrial dynamics. Moreover, we demonstrated that CE activated AMP-activated protein kinase (AMPK) and treatment with the AMPK inhibitor, compound C, abolished the protective effects of CE on OPA1 expression and mitochondrial function. Overall, this study demonstrates that CE is effective in mitigating MIRI by modulating AMPK activation-mediated OPA1-related mitochondrial fusion.
Collapse
|
35
|
Lee H, Smith SB, Sheu SS, Yoon Y. The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress. J Biol Chem 2020; 295:6543-6560. [PMID: 32245890 DOI: 10.1074/jbc.ra119.010983] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/31/2020] [Indexed: 01/23/2023] Open
Abstract
Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane-associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells.
Collapse
Affiliation(s)
- Hakjoo Lee
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
36
|
Albensi BC. What Is Nuclear Factor Kappa B (NF-κB) Doing in and to the Mitochondrion? Front Cell Dev Biol 2019; 7:154. [PMID: 31448275 PMCID: PMC6692429 DOI: 10.3389/fcell.2019.00154] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
A large body of literature supports the idea that nuclear factor kappa B (NF-κB) signaling contributes to not only immunity, but also inflammation, cancer, and nervous system function. However, studies on NF-κB activity in mitochondrial function are much more limited and scattered throughout the literature. For example, in 2001 it was first published that NF-κB subunits were found in the mitochondria, including not only IkBα and NF-κB p65 subunits, but also NF-κB pathway proteins such as IKKα, IKKβ, and IKKγ, but not much follow-up work has been done to date. Upon further thought the lack of studies on NF-κB activity in mitochondrial function is surprising given the importance and the evolutionary history of both NF-κB and the mitochondrion. Both are ancient in their appearance in our biological record where both contribute substantially to cell survival, cell death, and the regulation of function and/or disease. Studies also show NF-κB can influence mitochondrial function from outside the mitochondria. Therefore, it is essential to understand the complexity of these roles both inside and out of this organelle. In this review, an attempt is made to understand how NF-κB activity contributes to overall mitochondrial function – both inside and out. The discussion at times is speculative and perhaps even provocative to some, since NF-κB does not yet have defined mitochondrial targeting sequences for some nuclear-encoded mitochondrial genes and mechanisms of mitochondrial import for NF-κB are not yet entirely understood. Also, the data associated with the mitochondrial localization of proteins must be yet further proved with additional experiments.
Collapse
Affiliation(s)
- Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
37
|
Diabetic Pregnancy and Maternal High-Fat Diet Impair Mitochondrial Dynamism in the Developing Fetal Rat Heart by Sex-Specific Mechanisms. Int J Mol Sci 2019; 20:ijms20123090. [PMID: 31242551 PMCID: PMC6627740 DOI: 10.3390/ijms20123090] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Infants born to diabetic or obese mothers are at greater risk of heart disease at birth and throughout life, but prevention is hindered because underlying mechanisms remain poorly understood. Using a rat model, we showed that prenatal exposure to maternal diabetes and a high-fat diet caused diastolic and systolic dysfunction, myocardial lipid accumulation, decreased respiratory capacity, and oxidative stress in newborn offspring hearts. This study aimed to determine whether mitochondrial dynamism played a role. Using confocal live-cell imaging, we examined mitochondrial dynamics in neonatal rat cardiomyocytes (NRCM) from four prenatally exposed groups: controls, diabetes, high-fat diet, and combination exposed. Cardiac expression of dynamism-related genes and proteins were compared, and gender-specific differences were evaluated. Findings show that normal NRCM have highly dynamic mitochondria with a well-balanced number of fusion and fission events. Prenatal exposure to diabetes or a high-fat diet impaired dynamism resulting in shorter, wider mitochondria. Mechanisms of impaired dynamism were gender-specific and protein regulated. Females had higher expression of fusion proteins which may confer a cardioprotective effect. Prenatally exposed male hearts had post-translational modifications known to impair dynamism and influence mitophagy-mediated cell death. This study identifies mitochondrial fusion and fission proteins as targetable, pathogenic regulators of heart health in offspring exposed to excess circulating maternal fuels.
Collapse
|
38
|
Alavi MV. Targeted OMA1 therapies for cancer. Int J Cancer 2019; 145:2330-2341. [PMID: 30714136 DOI: 10.1002/ijc.32177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
The mitochondrial inner membrane proteins OMA1 and OPA1 belong to the BAX/BAK1-dependent apoptotic signaling pathway, which can be regulated by tumor protein p53 and the prohibitins PHB and PHB2 in the context of neoplastic disease. For the most part these proteins have been studied separate from each other. Here, I argue that the OMA1 mechanism of action represents the missing link between p53 and cytochrome c release. The mitochondrial fusion protein OPA1 is cleaved by OMA1 in a stress-dependent manner generating S-OPA1. Excessive S-OPA1 can facilitate outer membrane permeabilization upon BAX/BAK1 activation through its membrane shaping properties. p53 helps outer membrane permeabilization in a 2-step process. First, cytosolic p53 activates BAX/BAK1 at the mitochondrial surface. Then, in a second step, p53 binds to prohibitin thereby releasing the restraint on OMA1. This activates OMA1, which cleaves OPA1 and promotes cytochrome c release. Clearly, OMA1 and OPA1 are not root causes for cancer. Yet many cancer cells rely on this pathway for survival, which can explain why loss of p53 function promotes tumor growth and confers resistance to chemotherapies.
Collapse
|
39
|
Adaniya SM, O-Uchi J, Cypress MW, Kusakari Y, Jhun BS. Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol 2019; 316:C583-C604. [PMID: 30758993 DOI: 10.1152/ajpcell.00523.2018] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial fragmentation frequently occurs in chronic pathological conditions as seen in various human diseases. In fact, abnormal mitochondrial morphology and mitochondrial dysfunction are hallmarks of heart failure (HF) in both human patients and HF animal models. A link between mitochondrial fragmentation and cardiac pathologies has been widely proposed, but the physiological relevance of mitochondrial fission and fusion in the heart is still unclear. Recent studies have increasingly shown that posttranslational modifications (PTMs) of fission and fusion proteins are capable of directly modulating the stability, localization, and/or activity of these proteins. These PTMs include phosphorylation, acetylation, ubiquitination, conjugation of small ubiquitin-like modifier proteins, O-linked-N-acetyl-glucosamine glycosylation, and proteolysis. Thus, understanding the PTMs of fission and fusion proteins may allow us to understand the complexities that determine the balance of mitochondrial fission and fusion as well as mitochondrial function in various cell types and organs including cardiomyocytes and the heart. In this review, we summarize present knowledge regarding the function and regulation of mitochondrial fission and fusion in cardiomyocytes, specifically focusing on the PTMs of each mitochondrial fission/fusion protein. We also discuss the molecular mechanisms underlying abnormal mitochondrial morphology in HF and their contributions to the development of cardiac diseases, highlighting the crucial roles of PTMs of mitochondrial fission and fusion proteins. Finally, we discuss the future potential of manipulating PTMs of fission and fusion proteins as a therapeutic strategy for preventing and/or treating HF.
Collapse
Affiliation(s)
- Stephanie M Adaniya
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota.,Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University , Providence, Rhode Island
| | - Jin O-Uchi
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Michael W Cypress
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine , Tokyo , Japan
| | - Bong Sook Jhun
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|