1
|
Zhang J, Fan J, Luo H, Liang Z, Guan Y, Lei X, Bo N, Zhao M. Alleviation of Alcoholic Fatty Liver by Dendrobium officinale Flower Extracts due to Regulation of Gut Microbiota and Short-Chain Fatty Acids in Mice Exposed to Chronic Alcohol. Foods 2023; 12:foods12071428. [PMID: 37048249 PMCID: PMC10093958 DOI: 10.3390/foods12071428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Alcoholic fatty liver disease (AFLD) is caused by long-term heavy alcohol consumption; therefore, useful and practical methods for the prevention of AFLD are urgently needed. The edible flower of Dendrobium officinale contains diverse flavonoids, and has shown antioxidant activity as well as antihypertensive and anti-inflammatory effects. In this study, an AFLD model was established, the protective effect of D. officinale flower (DOF) ethanol extract on AFLD was evaluated, and its mechanisms were investigated by analyzing gut microbiota and short-chain fatty acids (SCFAs). DOF extract (DOFE) supplementation promoted alcohol metabolism, restored hepatic antioxidant capacity, alleviated oxidative stress, reduced inflammatory factor levels, and inhibited dyslipidemia induced by alcohol intake in chronic alcohol-exposed mice, especially in the high DOFE group. Moreover, DOFE supplementation increased the diversity, structure, and composition of the gut microbiota in mice, restored some of the abnormal SCFA levels caused by AFLD, and helped restore intestinal function. DOFE supplementation significantly increased the relative abundance of Akkermansia, suggesting that Akkermansia may be a potential target of the protective effect of DOFE. Therefore, DOFE supplementation to improve the composition of the gut microbiota may be an effective therapeutic strategy for the prevention of AFLD.
Collapse
Affiliation(s)
- Jingchi Zhang
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jiakun Fan
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Hui Luo
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Zhengwei Liang
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yanhui Guan
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xin Lei
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Nianguo Bo
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Ming Zhao
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: ; Tel.: +86-0871-65810810
| |
Collapse
|
2
|
Aging-Accelerated Mouse Prone 8 (SAMP8) Mice Experiment and Network Pharmacological Analysis of Aged Liupao Tea Aqueous Extract in Delaying the Decline Changes of the Body. Antioxidants (Basel) 2023; 12:antiox12030685. [PMID: 36978933 PMCID: PMC10045736 DOI: 10.3390/antiox12030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Aging and metabolic disorders feedback and promote each other and are closely related to the occurrence and development of cardiovascular disease, type 2 diabetes, neurodegeneration and other degenerative diseases. Liupao tea is a geographical indication product of Chinese dark tea, with a “red, concentrated, aged and mellow” flavor quality. In this study, the aqueous extract of aged Liupao tea (ALPT) administered by continuous gavage significantly inhibited the increase of visceral fat and damage to the intestinal–liver–microbial axis in high-fat modeling of SAMP8 (P8+HFD) mice. Its potential mechanism is that ALPT significantly inhibited the inflammation and aggregation formation pathway caused by P8+HFD, increased the abundance of short-chain fatty acid producing bacteria Alistipes, Alloprevotella and Bacteroides, and had a calorie restriction effect. The results of the whole target metabolome network pharmacological analysis showed that there were 139 potential active components in the ALPT aqueous extract, and the core targets of their actions were SRC, TP53, AKT1, MAPK3, VEGFA, EP300, EGFR, HSP90AA1, CASP3, etc. These target genes were mainly enriched in cancer, neurodegenerative diseases, glucose and lipid metabolism and other pathways of degenerative changes. Molecular docking further verified the reliability of network pharmacology. The above results indicate that Liupao tea can effectively delay the body’s degenerative changes through various mechanisms and multi-target effects. This study revealed that dark tea such as Liupao tea has significant drinking value in a modern and aging society.
Collapse
|
3
|
Li BY, Li HY, Zhou DD, Huang SY, Luo M, Gan RY, Mao QQ, Saimaiti A, Shang A, Li HB. Effects of Different Green Tea Extracts on Chronic Alcohol Induced-Fatty Liver Disease by Ameliorating Oxidative Stress and Inflammation in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5188205. [PMID: 35003517 PMCID: PMC8731271 DOI: 10.1155/2021/5188205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/06/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
Alcoholic fatty liver disease (AFLD) is a common chronic liver disease and has become a critical global public health problem. Green tea is a popular drink worldwide and contains several bioactive compounds. Different green teas could contain diverse compounds and possess distinct bioactivities. In the present study, the effects of 10 green teas on chronic alcohol induced-fatty liver disease in mice were explored and compared. The results showed that several green teas significantly reduced triacylglycerol levels in serum and liver as well as the aminotransferase activities in mice at a dose of 200 mg/kg, suggesting that they possess hepatoprotective effects. Moreover, several green teas remarkably decreased the expression of cytochrome P450 2E1, the levels of malondialdehyde and 4-hydroxynonenoic acid, and the contents of proinflammatory cytokines, indicating that they could alleviate oxidation damage and inflammation induced by chronic alcohol exposure. In addition, Seven Star Matcha Tea and Selenium-Enriched Matcha Tea could increase glutathione level. Furthermore, the main phytochemical components in green teas were determined and quantified by high-performance liquid chromatography, and the correlation analysis showed that gallic acid, gallocatechin, catechin, chlorogenic acid, and epigallocatechin gallate might at least partially contribute to protective effects on AFLD. In conclusion, Selenium-Enriched Chaoqing Green Tea, Xihu Longjing Tea, Taiping Houkui Tea, and Selenium-Enriched Matcha Tea showed the strongest preventive effects on AFLD. This research also provides the public with new insights about the effects of different green teas on AFLD.
Collapse
Affiliation(s)
- Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Li H, Zhai B, Sun J, Fan Y, Zou J, Cheng J, Zhang X, Shi Y, Guo D. Antioxidant, Anti-Aging and Organ Protective Effects of Total Saponins from Aralia taibaiensis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4025-4042. [PMID: 34594101 PMCID: PMC8476322 DOI: 10.2147/dddt.s330222] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Aim Aralia taibaiensis is a natural medicinal and food plant that is rich in triterpenoid saponins with hypoglycaemic, antioxidant, hepatoprotective, anti-gastric ulcer and anti-inflammatory effects. This study has significance in terms of the antioxidant, anti-aging and organ protective effects of Aralia taibaiensis total saponins (TSAT) in D-galactose-induced aging rats. Methods The saponin composition of TSAT was determined and quantified by high performance liquid chromatography (HPLC). We consolidated the antioxidant and enzyme inhibitory activities of TSAT in vitro and assessed the effects of TSAT on daily mobility, body weight, behaviour, organ indices, oxidation-related indices and pathological changes in aging rats. Results In vitro experiments showed that TSAT had a scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), tyrosinase, hydroxyl radicals (HO•) and superoxide radicals (•O2-) and was closely related to the dose of TSAT. In vivo experiments showed that after 8 weeks of continuous gavage administration, the rats gradually recovered their body weight, daily activity ability, learning and memory ability and organ index and effectively improved D-gal-induced organ injury. Specifically, TSAT significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) and significantly decreased malondialdehyde (MDA) levels in the serum, brain, heart, lung, spleen and kidney of aging rats compared to the model group. In addition, TSAT significantly inhibited the D-gal-induced upregulation of hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. The histopathological results showed that TSAT reversed D-gal-induced damage to the brain, heart, lung, kidney, liver and spleen to varying degrees. Conclusion TSAT is a high-quality natural product with antioxidant and anti-aging properties that can alleviate D-gal-induced aging damage in rats.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yu Fan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Junbo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yajun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| |
Collapse
|
5
|
Green Tea and Epigallocatechin Gallate (EGCG) for the Management of Nonalcoholic Fatty Liver Diseases (NAFLD): Insights into the Role of Oxidative Stress and Antioxidant Mechanism. Antioxidants (Basel) 2021; 10:antiox10071076. [PMID: 34356308 PMCID: PMC8301033 DOI: 10.3390/antiox10071076] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver diseases (NAFLD) represent a set of liver disorders progressing from steatosis to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma, which induce huge burden to human health. Many pathophysiological factors are considered to influence NAFLD in a parallel pattern, involving insulin resistance, oxidative stress, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammatory cascades, fibrogenic reaction, etc. However, the underlying mechanisms, including those that induce NAFLD development, have not been fully understood. Specifically, oxidative stress, mainly mediated by excessive accumulation of reactive oxygen species, has participated in the multiple NAFLD-related signaling by serving as an accelerator. Ameliorating oxidative stress and maintaining redox homeostasis may be a promising approach for the management of NAFLD. Green tea is one of the most important dietary resources of natural antioxidants, above which epigallocatechin gallate (EGCG) notably contributes to its antioxidative action. Accumulative evidence from randomized clinical trials, systematic reviews, and meta-analysis has revealed the beneficial functions of green tea and EGCG in preventing and managing NAFLD, with acceptable safety in the patients. Abundant animal and cellular studies have demonstrated that green tea and EGCG may protect against NAFLD initiation and development by alleviating oxidative stress and the related metabolism dysfunction, inflammation, fibrosis, and tumorigenesis. The targeted signaling pathways may include, but are not limited to, NRF2, AMPK, SIRT1, NF-κB, TLR4/MYD88, TGF-β/SMAD, and PI3K/Akt/FoxO1, etc. In this review, we thoroughly discuss the oxidative stress-related mechanisms involved in NAFLD development, as well as summarize the protective effects and underlying mechanisms of green tea and EGCG against NAFLD.
Collapse
|
6
|
Pokharel SS, Shen F, Parajulee MN, Wang Y, Chen F. Effects of elevated atmospheric CO2 concentration on tea quality and insect pests’ occurrences: A review. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Luo M, Gan RY, Li BY, Mao QQ, Shang A, Xu XY, Li HY, Li HB. Effects and Mechanisms of Tea on Parkinson’s Disease, Alzheimer’s Disease and Depression. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1904413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou
| |
Collapse
|
8
|
Zhou DD, Luo M, Shang A, Mao QQ, Li BY, Gan RY, Li HB. Antioxidant Food Components for the Prevention and Treatment of Cardiovascular Diseases: Effects, Mechanisms, and Clinical Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6627355. [PMID: 33574978 PMCID: PMC7864729 DOI: 10.1155/2021/6627355] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) have gained increasing attention because of their high prevalence and mortality worldwide. Epidemiological studies revealed that intake of fruits, vegetables, nuts, and cereals could reduce the risk of CVDs, and their antioxidants are considered as the main contributors. Moreover, experimental studies showed that some antioxidant natural products and their bioactive compounds exerted beneficial effects on the cardiovascular system, such as polyphenols, polysaccharides, anthocyanins, epigallocatechin gallate, quercetin, rutin, and puerarin. The mechanisms of action mainly included reducing blood pressure, improving lipid profile, ameliorating oxidative stress, mitigating inflammation, and regulating gut microbiota. Furthermore, clinical trials confirmed the cardiovascular-protective effect of some antioxidant natural products, such as soursop, beetroot, garlic, almond, and green tea. In this review, we summarized the effects of some antioxidant natural products and their bioactive compounds on CVDs based on the epidemiological, experimental, and clinical studies, with special attention paid to the relevant mechanisms and clinical trials.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
To Be or Not to Be… An Antioxidant? That Is the Question. Antioxidants (Basel) 2020; 9:antiox9121234. [PMID: 33291380 PMCID: PMC7762054 DOI: 10.3390/antiox9121234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
|
10
|
Meng X, Tang GY, Liu PH, Zhao CJ, Liu Q, Li HB. Antioxidant activity and hepatoprotective effect of 10 medicinal herbs on CCl 4-induced liver injury in mice. World J Gastroenterol 2020; 26:5629-5645. [PMID: 33088157 PMCID: PMC7545387 DOI: 10.3748/wjg.v26.i37.5629] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Many natural products confer health benefits against diverse diseases through their antioxidant activities. Carbon tetrachloride (CCl4) is often used in animal experiments to study the effects of substances on liver injury and the related mechanisms of action, among which oxidative stress is a major pathogenic factor.
AIM To compare antioxidant and hepatoprotective activities of ten herbs and identify and quantify phytochemicals for the one with strongest hepatoprotection.
METHODS The antioxidant activity of ten medicinal herbs was determined by both ferric-reducing antioxidant power and Trolox equivalent antioxidant capacity assays. The total phenolic and flavonoid contents were determined by Folin–Ciocalteu method and aluminum chloride colorimetry, respectively. Their effects on CCl4-induced oxidative liver injury were evaluated and compared in a mouse model by administrating each water extract (0.15 g/mL, 10 mL/kg) once per day for seven consecutive days and a dose of CCl4 solution in olive oil (8%, v/v, 10 mL/kg). The herb with the strongest hepatoprotective performance was analyzed for the detailed bioactive components by using high-performance liquid chromatography-electrospray ionization source-ion trap tandem mass spectrometry.
RESULTS The results revealed that all tested herbs attenuated CCl4-induced oxidative liver injury; each resulted in significant decreases in levels of serum alanine transaminase, aspartate transaminase, alkaline phosphatase, and triacylglycerols. In addition, most herbs restored hepatic superoxide dismutase and catalase activities, glutathione levels, and reduced malondialdehyde levels. Sanguisorba officinalis (S. officinalis) L., Coptis chinensis Franch., and Pueraria lobata (Willd.) Ohwi root were the three most effective herbs, and S. officinalis L. exhibited the strongest hepatoprotective effect. Nine active components were identified in S. officinalis L. Gallic acid and (+)-catechin were quantified (7.86 ± 0.45 mg/g and 8.19 ± 0.57 mg/g dried weight, respectively). Furthermore, the tested herbs displayed a range of in vitro antioxidant activities proportional to their phenolic content; the strongest activities were also found for S. officinalis L.
CONCLUSION This study is of value to assist the selection of more effective natural products for direct consumption and the development of nutraceuticals or therapeutics to manage oxidative stress-related diseases.
Collapse
Affiliation(s)
- Xiao Meng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Guo-Yi Tang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Pin-He Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Chan-Juan Zhao
- Department of Bio-statistics, School of Public Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Qing Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
11
|
Cao SY, Li BY, Gan RY, Mao QQ, Wang YF, Shang A, Meng JM, Xu XY, Wei XL, Li HB. The In Vivo Antioxidant and Hepatoprotective Actions of Selected Chinese Teas. Foods 2020; 9:E262. [PMID: 32121649 PMCID: PMC7143450 DOI: 10.3390/foods9030262] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Tea is a popular beverage and shows very strong in vitro antioxidant activity. However, the relationship among in vitro and in vivo antioxidant activities in teas is seldom reported. In this study, in vivo antioxidant and hepatoprotective activities of 32 selected Chinese teas were evaluated on a mouse model with acute alcohol-induced liver injury. The results showed that most teas significantly reduced the levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, triacylglycerol, and total bilirubin in the sera of mice at a dose of 400 mg/kg. In addition, most teas greatly decreased the malondialdehyde level and increased the levels of superoxide dismutase, glutathione peroxidase, and glutathione in the liver of mice, indicating the antioxidant and hepatoprotective activities of teas. Furthermore, the in vivo antioxidant activity of dark tea was stronger than that of green tea, opposite to the results of the in vitro study. Among these 32 teas, Black Fu Brick Tea, Pu-erh Tea, and Qing Brick Tea showed the strongest antioxidant and hepatoprotective activities. Moreover, total phenolic content as well as the contents of epicatechin, gallocatechin gallate, and chlorogenic acid were found to contribute, at least partially, to the antioxidant and hepatoprotective actions of these teas. Overall, teas are good dietary components with antioxidant and hepatoprotective actions.
Collapse
Affiliation(s)
- Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Yuan-Feng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China;
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| |
Collapse
|