1
|
Xiao Y, Gao X, Yuan J. Substituting ethoxyquin with tea polyphenols and propyl gallate enhanced feed oxidative stability, broiler hepatic antioxidant capacity and gut health. Poult Sci 2024; 103:104368. [PMID: 39405832 PMCID: PMC11525215 DOI: 10.1016/j.psj.2024.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
The safety of ethoxyquin has garnered increasing attention. This study evaluated the effects of partially substituting ethoxyquin with tea polyphenols and propyl gallate on feed oxidative stability, hepatic antioxidant properties, intestinal morphology and barrier functions, as well as the antioxidant and anti-inflammatory profiles of the intestinal mucosa in broilers. A total of 351 one-day-old male Arbor Acres Plus broilers were randomly assigned to 3 groups, each comprising 9 replicates with 13 birds per replicate. The treatments included a control group (CON) fed a basal diet, an ethoxyquin group (EQ) that received the basal diet supplemented with 120 g/t of ethoxyquin, and a substitution group (TP) receiving the basal diet supplemented with 6 g/t of tea polyphenols, 6 g/t of propyl gallate, and 30 g/t of ethoxyquin. In vitro experiments showed that both EQ and TP supplementation significantly reduced the acid value (AV), peroxide value (POV), and total oxidation value (TOV) of the feeds, with the TP group exhibiting lower AV and TOV than the EQ group. In vivo assessments revealed no significant differences in growth performance among the groups. Additionally, the TP group exhibited significantly higher glutathione peroxidase activity, increased glutathione content, and elevated protein expression of Keap1, Nrf2, and NQO1 in the liver compared to the control group (P < 0.05). Moreover, dietary TP significantly increased liver catalase activity, glutathione content, and NQO1 protein levels compared to the EQ group (P < 0.05). Both additives effectively reduced malondialdehyde levels in the intestinal mucosa by approximately 50% (P < 0.05) through the activation of the Nrf2/ARE pathway, as indicated by increased mRNA expression of TXN, CAT, GPX1, and GPX4 (P < 0.05). Furthermore, compared to the control group, the TP group exhibited greater villus height and villus height-to-crypt depth ratio (VCR) in the jejunum, as well as elevated VCR in the ileum (P < 0.05). The TP group also achieved the lowest serum levels of diamine oxidase activity, D-lactate and lipopolysaccharide contents among all groups (P < 0.05). The inclusion of both EQ and TP increased the mRNA expression of Occludin, Claudin-1, Mucin-2, and E-cadherin in the jejunum (P < 0.05). Moreover, the combination of tea polyphenols and propyl gallate effectively mitigated the proinflammatory effect of ethoxyquin, as evidenced by reductions in TNF-α, IL-18, and IFN-γ expression, potentially mediated by inhibition of the TLR-4/MyD88/NF-κB signaling pathway. In conclusion, this study demonstrates that partially replacing ethoxyquin with tea polyphenols and propyl gallate enhances feed oxidative stability, liver antioxidant capacity, and gut health in broilers, suggesting an efficient alternative with a lower dosage requirement.
Collapse
Affiliation(s)
- Yong Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuyang Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Bai B, Shen D, Meng S, Guo Y, Feng B, Bo T, Zhang J, Yang Y, Fan S. Separation and Detection of Catechins and Epicatechins in Shanxi Aged Vinegar Using Solid-Phase Extraction and Hydrophobic Deep Eutectic Solvents Combined with HPLC. Molecules 2024; 29:2344. [PMID: 38792205 PMCID: PMC11124522 DOI: 10.3390/molecules29102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This research presents a new, eco-friendly, and swift method combining solid-phase extraction and hydrophobic deep eutectic solvents (DES) with high-performance liquid chromatography (SPE-DES-HPLC) for extracting and quantifying catechin and epicatechin in Shanxi aged vinegar (SAV). The parameters, such as the elution solvent type, the XAD-2 macroporous resin dosage, the DES ratio, the DES volume, the adsorption time, and the desorption time, were optimized via a one-way experiment. A central composite design using the Box-Behnken methodology was employed to investigate the effects of various factors, including 17 experimental runs and the construction of three-dimensional response surface plots to identify the optimal conditions. The results show that the optimal conditions were an HDES (tetraethylammonium chloride and octanoic acid) ratio of 1:3, an XAD-2 macroporous resin dosage of 188 mg, and an adsorption time of 11 min. Under these optimal conditions, the coefficients of determination of the method were greater than or equal to 0.9917, the precision was less than 5%, and the recoveries ranged from 98.8% to 118.8%. The environmentally friendly nature of the analytical process and sample preparation was assessed via the Analytical Eco-Scale and AGREE, demonstrating that this method is a practical and eco-friendly alternative to conventional determination techniques. In summary, this innovative approach offers a solid foundation for the assessment of flavanol compounds present in SAV samples.
Collapse
Affiliation(s)
- Baoqing Bai
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
- Xinghuacun College, Shanxi University, Taiyuan 030006, China
| | - Dan Shen
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
| | - Siyuan Meng
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
| | - Yanli Guo
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
| | - Bin Feng
- Inspection and Testing Center of Shanxi Province, Taiyuan 030031, China;
- Shanxi Key Laboratory of Food and Drug Safety Prevention and Control, Taiyuan 030031, China
| | - Tao Bo
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
- Xinghuacun College, Shanxi University, Taiyuan 030006, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
- Xinghuacun College, Shanxi University, Taiyuan 030006, China
| | - Sanhong Fan
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
- Xinghuacun College, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Wang LH, Qu WH, Xu YN, Xia SG, Xue QQ, Jiang XM, Liu HY, Xue CH, Wen YQ. Developing a High-Umami, Low-Salt Soy Sauce through Accelerated Moromi Fermentation with Corynebacterium and Lactiplantibacillus Strains. Foods 2024; 13:1386. [PMID: 38731757 PMCID: PMC11083161 DOI: 10.3390/foods13091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The traditional fermentation process of soy sauce employs a hyperhaline model and has a long fermentation period. A hyperhaline model can improve fermentation speed, but easily leads to the contamination of miscellaneous bacteria and fermentation failure. In this study, after the conventional koji and moromi fermentation, the fermentation broth was pasteurized and diluted, and then inoculated with three selected microorganisms including Corynebacterium glutamicum, Corynebacterium ammoniagenes, and Lactiplantibacillus plantarum for secondary fermentation. During this ten-day fermentation, the pH, free amino acids, organic acids, nucleotide acids, fatty acids, and volatile compounds were analyzed. The fermentation group inoculated with C. glutamicum accumulated the high content of amino acid nitrogen of 0.92 g/100 mL and glutamic acid of 509.4 mg/100 mL. The C. ammoniagenes group and L. plantarum group were rich in nucleotide and organic acid, respectively. The fermentation group inoculated with three microorganisms exhibited the best sensory attributes, showing the potential to develop a suitable fermentation method. The brewing speed of the proposed process in this study was faster than that of the traditional method, and the umami substances could be significantly accumulated in this low-salt fermented model (7% w/v NaCl). This study provides a reference for the low-salt and rapid fermentation of seasoning.
Collapse
Affiliation(s)
- Li-Hao Wang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Wen-Hui Qu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Ya-Nan Xu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Song-Gang Xia
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Qian-Qian Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Xiao-Ming Jiang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Hong-Ying Liu
- Ocean College, Hebei Agriculture University, Qinhuangdao 066000, China;
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Yun-Qi Wen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| |
Collapse
|
4
|
Karmakar B, Saha SP, Chakraborty R, Roy S. Optimization of starch extraction from Amorphophallus paeoniifolius corms using response surface methodology (RSM) and artificial neural network (ANN) for improving yield with tenable chemical attributes. Int J Biol Macromol 2023; 237:124183. [PMID: 36972818 DOI: 10.1016/j.ijbiomac.2023.124183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
The development of the extraction process for improving the starch yield from unconventional plants is emerging as a topic of interest. In this respect, the present work aimed to optimize the starch extraction from the corms of elephant foot yam (Amorphophallus paeoniifolius) with the help of response surface methodology (RSM) and artificial neural network (ANN). The RSM model performed better than the ANN in predicting the starch yield with higher precision. In this connection, this study for the first time reports the significant improvement of starch yield from A. paeoniifolius (51.76 g/100 g of the corm dry weight). The extracted starch samples based on yield - high (APHS), medium (APMS), and low (APLS) exhibited a variable granule size (7.17-14.14 μm) along with low ash content, moisture content, protein, and free amino acid indicating purity and desirability. The FTIR analysis also confirmed the chemical composition and purity of the starch samples. Moreover, the XRD analysis showed the prevalence of C-type starch (2θ = 14.303°). Based on other physicochemical, biochemical, functional, and pasting properties, the three starch samples showed more or less similar characteristics thereby indicating the sustentation of beneficial attributes of starch molecules irrespective of the variation in extraction parameters.
Collapse
Affiliation(s)
- Biswanath Karmakar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Shyama Prasad Saha
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Govt. College, Himachal Vihar, Matigara, Dist. Darjeeling, West Bengal, India.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
5
|
Wen YQ, Xue CH, Zhang HW, Xu LL, Wang XH, Bi SJ, Xue QQ, Xue Y, Li ZJ, Velasco J, Jiang XM. Concomitant oxidation of fatty acids other than DHA and EPA plays a role in the characteristic off-odor of fish oil. Food Chem 2023; 404:134724. [DOI: 10.1016/j.foodchem.2022.134724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
6
|
Boateng ID, Kuehnel L, Daubert CR, Agliata J, Zhang W, Kumar R, Flint-Garcia S, Azlin M, Somavat P, Wan C. Updating the status quo on the extraction of bioactive compounds in agro-products using a two-pot multivariate design. A comprehensive review. Food Funct 2023; 14:569-601. [PMID: 36537225 DOI: 10.1039/d2fo02520e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extraction is regarded as the most crucial stage in analyzing bioactive compounds. Nonetheless, due to the intricacy of the matrix, numerous aspects must be optimized during the extraction of bioactive components. Although one variable at a time (OVAT) is mainly used, this is time-consuming and laborious. As a result, using an experimental design in the optimization process is beneficial with few experiments and low costs. This article critically reviewed two-pot multivariate techniques employed in extracting bioactive compounds in food in the last decade. First, a comparison of the parametric screening methods (factorial design, Taguchi, and Plackett-Burman design) was delved into, and its advantages and limitations in helping to select the critical extraction parameters were discussed. This was followed by a discussion of the response surface methodologies (central composite (CCD), Doehlert (DD), orthogonal array (OAD), mixture, D-optimal, and Box-Behnken designs (BBD), etc.), which are used to optimize the most critical variables in the extraction of bioactive compounds in food, providing a sequential comprehension of the linear and complex interactions and multiple responses and robustness tests. Next, the benefits, drawbacks, and possibilities of various response surface methodologies (RSM) and some of their usages were discussed, with food chemistry, analysis, and processing from the literature. Finally, extraction of food bioactive compounds using RSM was compared to artificial neural network modeling with their drawbacks discussed. We recommended that future experiments could compare these designs (BBD vs. CCD vs. DD, etc.) in the extraction of food-bioactive compounds. Besides, more research should be done comparing response surface methodologies and artificial neural networks regarding their practicality and limitations in extracting food-bioactive compounds.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Lucas Kuehnel
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Wenxue Zhang
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO, 65211, USA
| | - Mustapha Azlin
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA. .,Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
7
|
Wen YQ, Zhang HW, Xue CH, Wang XH, Bi SJ, Xu LL, Xue QQ, Xue Y, Li ZJ, Velasco J, Jiang XM. A chemometric study on the identification of 5-methylfurfural and 2-acetylfuran as particular volatile compounds of oxidized fish oil based on SHS-GC-IMS. Food Chem 2023; 399:133991. [DOI: 10.1016/j.foodchem.2022.133991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
|
8
|
Metwally RA, El-Sersy NA, El Sikaily A, Sabry SA, Ghozlan HA. Optimization and multiple in vitro activity potentials of carotenoids from marine Kocuria sp. RAM1. Sci Rep 2022; 12:18203. [PMID: 36307503 PMCID: PMC9616409 DOI: 10.1038/s41598-022-22897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/20/2022] [Indexed: 12/31/2022] Open
Abstract
Marine pigmented bacteria are a promising natural source of carotenoids. Kocuria sp. RAM1 was isolated from the Red Sea Bohadschia graeffei collected from Marsa Alam, Egypt, and used for carotenoids production. The extracted carotenoids were purified by thin-layer chromatography (TLC). The characteristic UV absorbance of the three purified fractions gave us an inkling of what the purified pigments were. The chemical structures were confirmed by nuclear magnetic resonance spectroscopy (NMR) and LC-ESI-QTOF-MS/MS. The three different red pigments were identified as two C50-carotenoids, namely bisanhydrobacterioruberin and trisanhydrobacterioruberin, in addition to 3,4,3',4'-Tetrahydrospirilloxanthin (C42-carotenoids). Kocuria sp. RAM1 carotenoids were investigated for multiple activities, including antimicrobial, anti-inflammatory, antioxidant, anti-HSV-1, anticancer, antidiabetic and wound healing. These new observations suggest that Kocuria sp. RAM1 carotenoids can be used as a distinctive natural pigment with potent properties.
Collapse
Affiliation(s)
- Rasha A. Metwally
- grid.419615.e0000 0004 0404 7762Marine Microbiology Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Nermeen A. El-Sersy
- grid.419615.e0000 0004 0404 7762Marine Microbiology Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Amany El Sikaily
- grid.419615.e0000 0004 0404 7762Marine Pollution Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Soraya A. Sabry
- grid.7155.60000 0001 2260 6941Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hanan A. Ghozlan
- grid.7155.60000 0001 2260 6941Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Ultrasonic-Assisted Extraction of Flavonoids from Juglans mandshurica Maxim.: Artificial Intelligence-Based Optimization, Kinetics Estimation, and Antioxidant Potential. Molecules 2022; 27:molecules27154837. [PMID: 35956798 PMCID: PMC9369614 DOI: 10.3390/molecules27154837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Ultrasonic-assisted extraction (UAE) of flavonoids (JMBF) from Juglans mandshurica Maxim., an important industrial crop in China, was investigated in the present study. To improve the extraction efficiency of JMBF, suitable UAE was proposed after optimization using a hybrid response surface methodology–artificial neural network–genetic algorithm approach (RSM–ANN–GA). The maximum extraction yield (6.28 mg·g−1) of JMBF was achieved using the following optimum UAE conditions: ethanol concentration, 62%; solid–liquid ratio, 1:20 g·mL−1; ultrasonic power, 228 W; extraction temperature, 60 °C; extraction time, 40 min; total number of extractions, 1. Through the investigation of extraction kinetics, UAE offered a higher saturated concentration (Cs) for JMBF in comparison to traditional solvent extraction (TSE). Scanning electron microscopy (SEM) images showed that deeper holes were generated in J. mandshurica powder under the action of ultrasound, indicating that ultrasound significantly changed the structure of the plant materials to facilitate the dissolution of active substances. Extracts obtained using UAE and TSE were compared by Fourier-transform infrared spectroscopy analysis, the results of which revealed that the functional group of bioactive compounds in the extract was unaffected by the ultrasonication process. Moreover, JMBF was further shown to exhibit significant antioxidant properties in vitro. This study provides a basis for the application of JMBF as a natural antioxidant.
Collapse
|
10
|
Wen YQ, Xue CH, Zhang HW, Xu LL, Wang XH, Bi SJ, Xue QQ, Xue Y, Li ZJ, Velasco J, Jiang XM. Recombination of oxidized samples of DHA and purified sunflower oil reproduces the odor profile of impaired algae oil from Schizochytrium sp. and reveals the odor contribution of fatty acids other than DHA. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Wen YQ, Xu LL, Xue CH, Jiang XM. Effect of Stored Humidity and Initial Moisture Content on the Qualities and Mycotoxin Levels of Maize Germ and Its Processing Products. Toxins (Basel) 2020; 12:E535. [PMID: 32825493 PMCID: PMC7551338 DOI: 10.3390/toxins12090535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
With high fat and protein content, maize germ is easily infected with fungus and mycotoxins during its storage. The qualities and safety of germ and its processing products may be affected by the storage. However, studies on the effect of storage on quality and polluted mycotoxin level of maize germ are limited. In this study, maize germ was stored with different initial moisture contents (5.03, 9.07, 11.82 and 17.97%) or at different relative humidity (75, 85 and 95%) for 30 days. The quality indices of germ (moisture content and crude fat content) and their produced germ oils (color, acid value and peroxide value) as well as the zearalenone (ZEN) and deoxynivalenol (DON) levels of germ, oils and meals were analyzed. Results showed that maize germ with high initial moisture contents (11.82, 17.97%) or kept at high humidity (95%) became badly moldy at the end of storage. Meanwhile, the qualities of these germ and oils showed great changes. However, the ZEN and DON contents of this maize germ, oils and meals stayed at similar levels (p < 0.05). Therefore, the storage could produce influence on the qualities of germ and oils, but showed limited effect on the DON and ZEN levels of germ and their processing products. According to this study, the storage condition of germ with no more than 9% moisture content and no higher than 75% humidity was recommended. This study would be benefit for the control of germ qualities and safety during its storage.
Collapse
Affiliation(s)
| | | | | | - Xiao-ming Jiang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China; (Y.-q.W.); (L.-l.X.); (C.-h.X.)
| |
Collapse
|
12
|
Ardah MT, Ghanem SS, Abdulla SA, Lv G, Emara MM, Paleologou KE, Vaikath NN, Lu JH, Li M, Vekrellis K, Eliezer D, El-Agnaf OMA. Inhibition of alpha-synuclein seeded fibril formation and toxicity by herbal medicinal extracts. BMC Complement Med Ther 2020; 20:73. [PMID: 32143619 PMCID: PMC7076823 DOI: 10.1186/s12906-020-2849-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Recent studies indicated that seeded fibril formation and toxicity of α-synuclein (α-syn) play a main role in the pathogenesis of certain diseases including Parkinson’s disease (PD), multiple system atrophy, and dementia with Lewy bodies. Therefore, examination of compounds that abolish the process of seeding is considered a key step towards therapy of several synucleinopathies. Methods Using biophysical, biochemical and cell-culture-based assays, assessment of eleven compounds, extracted from Chinese medicinal herbs, was performed in this study for their effect on α-syn fibril formation and toxicity caused by the seeding process. Results Salvianolic acid B and dihydromyricetin were the two compounds that strongly inhibited the fibril growth and neurotoxicity of α-syn. In an in-vitro cell model, these compounds decreased the insoluble phosphorylated α-syn and aggregation. Also, in primary neuronal cells, these compounds showed a reduction in α-syn aggregates. Both compounds inhibited the seeded fibril growth with dihydromyricetin having the ability to disaggregate preformed α-syn fibrils. In order to investigate the inhibitory mechanisms of these two compounds towards fibril formation, we demonstrated that salvianolic acid B binds predominantly to monomers, while dihydromyricetin binds to oligomeric species and to a lower extent to monomers. Remarkably, these two compounds stabilized the soluble non-toxic oligomers lacking β-sheet content after subjecting them to proteinase K digestion. Conclusions Eleven compounds were tested but only two showed inhibition of α-syn aggregation, seeded fibril formation and toxicity in vitro. These findings highlight an essential beginning for development of new molecules in the field of synucleinopathies treatment.
Collapse
Affiliation(s)
- Mustafa T Ardah
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Simona S Ghanem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Sara A Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Guohua Lv
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | - Mohamed M Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Katerina E Paleologou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nishant N Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Jia-Hong Lu
- State Key Lab of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Konstantinos Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| |
Collapse
|