1
|
Dhobale KV, Sahoo L. Identification of mungbean yellow mosaic India virus and susceptibility-related metabolites in the apoplast of mung bean leaves. PLANT CELL REPORTS 2024; 43:173. [PMID: 38877163 DOI: 10.1007/s00299-024-03247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
KEY MESSAGE The investigation of MYMIV-infected mung bean leaf apoplast revealed viral genome presence, increased EVs secretion, and altered stress-related metabolite composition, providing comprehensive insights into plant-virus interactions. The apoplast, an extracellular space around plant cells, plays a vital role in plant-microbe interactions, influencing signaling, defense, and nutrient transport. While the involvement of apoplast and extracellular vesicles (EVs) in RNA virus infection is documented, the role of the apoplast in plant DNA viruses remains unclear. This study explores the apoplast's role in mungbean yellow mosaic India virus (MYMIV) infection. Our findings demonstrate the presence of MYMIV genomic components in apoplastic fluid, suggesting potential begomovirus cell-to-cell movement via the apoplast. Moreover, MYMIV infection induces increased EVs secretion into the apoplast. NMR-based metabolomics reveals altered metabolic profiles in both apoplast and symplast in response to MYMIV infection, highlighting key metabolites associated with stress and defense mechanisms. The data show an elevation of α- and β-glucose in both apoplast and symplast, suggesting a shift in glucose utilization. Interestingly, this increase in glucose does not contribute to the synthesis of phenolic compounds, potentially influencing the susceptibility of mung bean to MYMIV. Fructose levels increase in the symplast, while apoplastic sucrose levels rise significantly. Symplastic aspartate levels increase, while proline exhibits elevated concentration in the apoplast and reduced concentration in the cytosol, suggesting a role in triggering a hypersensitive response. These findings underscore the critical role of the apoplast in begomovirus infection, providing insights for targeted viral disease management strategies.
Collapse
Affiliation(s)
- Kiran Vilas Dhobale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Najafi Vafa Z, Sohrabi Y, Mirzaghaderi G, Heidari G. The effect of rhizobia in improving the protective mechanisms of wheat under drought and supplementary irrigation conditions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1073240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IntroductionWheat (Triticum aestivum L.) is a strategic crop and one of the world's most essential cereals, providing most of the world's calories and protein needs. Drought stress is one of the main limitations for crop production such as wheat in arid and semi-arid regions. Plants can accumulate antioxidants, carbohydrates, and stress hormones that stimulate cell and molecular regeneration under stress conditions. Irrigation saves water, improves crop photosynthesis, and increases plant ability to absorb water and elements from soil. Therefore, irrigation at the right time or supplementary irrigation can help plant growth and crop yield under drought conditions. Appropriate nutrition with fertilizers increases plants' stress tolerance. Bio-fertilizers are restorative elements used in soil to improve tolerance to stresses such as drought stress. A well-known class of bio-fertilizers is plant growth promoting rhizobacteria (PGPR). These rhizosphere bacteria affect plant development and productivity by interacting with roots. Arbuscular mycorrhizal fungi (AMF) alleviate drought stress in plants by enhancing their ability to absorb water and nutrients from the soil. Seaweed extract bio-fertilizer is organic matter used to increase crop growth and soil fertility. This bio-fertilizer is utilized as growth stimulants and food supplements. Our research analyzed the effects of rhizobia and seaweed extracts on wheat's drought resistance mechanisms.Materials and methodsThis research was conducted in Iran in the crop years of 2017–2018 and 2018–2019 in the research farm of Kurdistan University Faculty of Agriculture located in Dehgolan with coordinates 47°18′ 55″ East and 35°19′ 10″ North with an altitude of 1866 meters above sea level, 45 kilometers east It was done on the wheat plant in Sanandaj city. The experiment was conducted in the form of a split-split plot in the form of a randomized complete block design with four replications. Irrigation treatments as the main factor (no irrigation or dry-land, one irrigation in the booting stage, two irrigations in the booting and spike stages), two wheat cultivars (Sardari and Sirvan) as secondary factors, and the application of biological fertilizers at eight levels including Mycorrhiza + Nitrozist and Phosphozist, Seaweed extract + Nitrozist and Phosphozist, Mycorrhiza + Seaweed extract, Mycorrhiza + Nitrozist and Phosphozist and no application of biological fertilizers (control) as Sub-sub-factors were considered.Results and discussionAccording to the study, when bio-fertilizer was applied with once and twice supplementary irrigation levels, leaf relative water content (RWC) and soluble protein content (SPC) increased, while lack of irrigation increased malondialdehyde (MDA). In both years, bio-fertilizers, especially their combinations, increased the amount and activity of enzymatic and non-enzymatic antioxidants, including peroxidase (POD), superoxide dismutase (SOD), phenol (Phe), flavonoid (Fla), and anthocyanin (Anth). Also, it enhanced the inhibition of free radicals by 2-2-Diphenyl picryl hydrazyl (DPPH) and cleared active oxygen species. It was found that malondialdehyde (MDA) levels were very low in wheat under two times irrigation with averages of 3.3909 and 3.3865 μmol g−1 FW. The results indicated a significant positive relationship between non-enzymatic and enzymatic antioxidants such as Phe, Fla, Anth, DPPH, POD, and SOD enzymes and their role in improving stress under dry-land conditions, especially in the Sardari variety. Biological fertilizers (Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract) increased wheat yield compared to the control. Furthermore, Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract improved grain yield by 8.04% and 6.96% in the 1st and 2nd years, respectively. Therefore, appropriate combinations of microorganisms, beneficial biological compounds, and supplementary irrigation can reduce the adverse effects of drought stress in arid and semi-arid regions.
Collapse
|
3
|
Thanwisai L, Kim Tran HT, Siripornadulsil W, Siripornadulsil S. A cadmium-tolerant endophytic bacterium reduces oxidative stress and Cd uptake in KDML105 rice seedlings by inducing glutathione reductase-related activity and increasing the proline content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:72-86. [PMID: 36208600 DOI: 10.1016/j.plaphy.2022.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The effect of the endophytic Cupriavidus taiwanensis KKU2500-3 on the Cd toxicity of KDML105 rice seedlings was investigated in a 10 μM CdCl2 hydroponic system. As demonstrated after bacterial inoculation of germinating rice seeds, KKU2500-3 colonized all rice plant parts. In RB (Rice + KKU2500-3) and RBC (Rice + KKU2500-3+Cd), KKU2500-3 effectively colonized and was detected at a markedly higher number in the root surface and interior than in shoots and leaves. The activities of antioxidant enzymes ascorbate peroxidase (APOX), glutathione reductase (GR), and superoxide dismutase (SOD) and the proline content in inoculated rice were higher in roots and aboveground tissues. RBC exhibited a higher reduced-to-oxidized glutathione ratio in roots and leaves (3-55%) but a lower malondialdehyde content (8-78%). Phytochelatins (PCs) were detected in all rice tissues, but their levels in RBC were 13-70% lower than those in RC (Rice + Cd), demonstrating that the induction of PCs in rice was unrelated to KKU2500-3. The Cd levels in roots and shoots were lower in RBC than RC, and the root-to-shoot Cd translocation factor was 0.6-62.2% lower. At 30 DAT, the Cd levels in RBC roots and shoots were 30.2% and 73.7% lower, respectively, than those in RC. Colonized KKU2500-3 activated GR and increased the proline content to overcome rice Cd toxicity. These effects may trap Cd in plant cells and reduce its translocation. Hence, KKU2500-3 synergistically interacts with rice to detoxify Cd at early growth stages, and KDML105 rice grains with low Cd accumulation could be produced if this interaction is maintained until late growth stages.
Collapse
Affiliation(s)
- Lalita Thanwisai
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hong Thi Kim Tran
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
4
|
Anisimova OK, Shchennikova AV, Kochieva EZ, Filyushin MA. Identification of Monodehydroascorbate Reductase (MDHAR) Genes in Garlic (Allium sativum L.) and Their Role in the Response to Fusarium proliferatum Infection. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422070031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Romo-Pérez ML, Weinert CH, Egert B, Franzisky BL, Kulling SE, Zörb C. Sodium accumulation has minimal effect on metabolite profile of onion bulbs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:423-431. [PMID: 34715567 DOI: 10.1016/j.plaphy.2021.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Onions (Allium cepa L.) are considered a salt-sensitive crop. However, to date, little evidence supports this claim and information about the physiological and metabolomic effects of Na+ accumulation in onion plants is lacking. The purpose of our research has been to assess changes in onion bulbs of three different cultivars after soil and foliar applications with moderate doses of chloride-free Na2SO4. The antioxidative defense mechanism in onion and the accumulation of Na+ within the plant has also been analyzed. Based on Na+ leaf and bulb concentrations, our findings demonstrate that Na+ is only transported from bulbs to leaves not vice versa, therefore foliar application does not lead to Na+ accumulation in the bulbs. Soil application with Na2SO4 results in an accumulation of Na+ in the leaves and bulbs, but with the exception of one onion variety this accumulation does not alter the metabolite profile of onions significantly. Even the K+ concentration and organic solute levels are unchanged after accumulation of Na+. Nevertheless, after Na2SO4 treatment, the antioxidative defense system moderately increases in onion bulbs. This study demonstrates that onion plants have the ability to exclude Na+ at moderate Na2SO4 treatment, and that the potential for quality onion production in soils with increased sodium concentration is much higher than previously assumed.
Collapse
Affiliation(s)
- M L Romo-Pérez
- University of Hohenheim, Institute of Crop Science, Quality of Plant Products 340e, Schloss Westflügel, 70599, Stuttgart, Germany.
| | - C H Weinert
- Max Rubner-Institute, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - B Egert
- Max Rubner-Institute, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - B L Franzisky
- University of Hohenheim, Institute of Crop Science, Quality of Plant Products 340e, Schloss Westflügel, 70599, Stuttgart, Germany
| | - S E Kulling
- Max Rubner-Institute, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - C Zörb
- University of Hohenheim, Institute of Crop Science, Quality of Plant Products 340e, Schloss Westflügel, 70599, Stuttgart, Germany
| |
Collapse
|
6
|
Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery. DRONES 2021. [DOI: 10.3390/drones5030061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Remote sensing (RS) platforms such as unmanned aerial vehicles (UAVs) represent an essential source of information in precision agriculture (PA) as they are able to provide images on a daily basis and at a very high resolution. In this framework, this study aims to identify the optimal level of nitrogen (N)-based nutrients for improved productivity in an onion field of “Cipolla Rossa di Tropea” (Tropea red onion). Following an experiment that involved the arrangement of nine plots in the onion field in a randomized complete block design (RCBD), with three replications, three different levels of N fertilization were compared: N150 (150 kg N ha−1), N180 (180 kg N ha−1), and e N210 (210 kg N ha−1). The crop cycle was monitored using multispectral (MS) UAV imagery, producing vigor maps and taking into account the yield of data. The soil-adjusted vegetation index (SAVI) was used to monitor the vigor of the crop. In addition, the coverage’s class onion was spatially identified using geographical object-based image classification (GEOBIA), observing differences in SAVI values obtained in plots subjected to differentiated N fertilizer treatment. The information retrieved from the analysis of soil properties (electrical conductivity, ammonium and nitrate nitrogen), yield performance and mean SAVI index data from each field plot showed significant relationships between the different indicators investigated. A higher onion yield was evident in plot N180, in which SAVI values were higher based on the production data.
Collapse
|
7
|
Zou P, Yang X, Yuan Y, Jing C, Cao J, Wang Y, Zhang L, Zhang C, Li Y. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. Int J Biol Macromol 2021; 180:547-558. [PMID: 33741372 DOI: 10.1016/j.ijbiomac.2021.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
A fuciodan (Mw = 11.1 kDa) was obtained and purified from Macrocystis pyrifera (MPF). MPF was an acid heteropolysaccharide including fucose, mannose, xylose, galactose, rhamnose, glucuronic acid, and glucose in a molar ratio of 3.1:1.0:0.86:0.63:0.25:0.33:0.11. Sulfate content in MPF was 28.6%, and the molar ratio of fucose to sulfate (Fuc:SO42-) was 1.0:0.58. The structure of MPF was mainly consist of repeating →3)-β-L-Fucp (2SO3-)-(1→ and →4)-β-D-Xylp-(1→3)-β-L-Fucp(2SO3-)-(1→ and with α-L-Fucp-(1→ and →6)-α-D-Galp-(1→ in branches. Moreover, the effects of different MPF concentrations on plant salt tolerance were investigated. The results indicated that MPF could improve the salt tolerance of wheat seedlings. Among the five concentrations (0.05, 0.1, 0.5, 1, and 2 mg/ml), 0.5 and 1 mg/ml MPF were optimal for effective plant salt-resistance activity. These results suggested that MPF extracted from brown seaweed show potential as plant stimulators that may be used to improve salt resistance of plants.
Collapse
Affiliation(s)
- Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xia Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jianmin Cao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Wang
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao 266000, China
| | - Lin Zhang
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao 266000, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
8
|
Bian L, Wang Y, Bai H, Li H, Zhang C, Chen J, Xu W. Melatonin-ROS signal module regulates plant lateral root development. PLANT SIGNALING & BEHAVIOR 2021; 16:1901447. [PMID: 33734026 PMCID: PMC8078526 DOI: 10.1080/15592324.2021.1901447] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lateral root (LR) branches from primary root. LR is vital for plants acquiring water and nutrients from soil, especially under stress conditions. LR development involves the complicated signaling network, which has not yet been fully understood. Melatonin, a novel endogenous plant regulator, plays a role in the regulation of LR development. However, we still have limited knowledge about melatonin-modulated signaling during LR development. Our recent study identifies that reactive oxygen species (ROS) acts as downstream signaling of melatonin to facilitate LR development. The recently identified receptor of melatonin in plants controls a signaling module involving G protein, ROS, and Ca2+. Based on these findings, we propose a novel signaling network for LR development controlled by melatonin.
Collapse
Affiliation(s)
- Liping Bian
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yousheng Wang
- China Tobacco Jiangsu Industrial Co. LTD, Nanjing, China
| | - Hongwu Bai
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hui Li
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Cunzheng Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Chen
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- CONTACT Jian Chen ; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing210014, China
| | - Weimin Xu
- Central Laboratory, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Weimin Xu Central Laboratory, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
9
|
Oelmüller R. Threat at One End of the Plant: What Travels to Inform the Other Parts? Int J Mol Sci 2021; 22:3152. [PMID: 33808792 PMCID: PMC8003533 DOI: 10.3390/ijms22063152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or-as volatiles-through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
10
|
Zandalinas SI, Fichman Y, Mittler R. Vascular Bundles Mediate Systemic Reactive Oxygen Signaling during Light Stress. THE PLANT CELL 2020; 32:3425-3435. [PMID: 32938754 PMCID: PMC7610290 DOI: 10.1105/tpc.20.00453] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 05/19/2023]
Abstract
Systemic signaling and systemic acquired acclimation (SAA) are essential for plant survival during episodes of environmental stress. Recent studies highlighted a key role for reactive oxygen species (ROS) signaling in mediating systemic responses and SAA during light stress in Arabidopsis (Arabidopsis thaliana). These studies further identified the RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) protein as a key player in mediating rapid systemic ROS responses. Here, we report that tissue-specific expression of RBOHD in phloem or xylem parenchyma cells of the rbohD mutant restores systemic ROS signaling, systemic stress-response transcript expression, and SAA to a local treatment of light stress. We further demonstrate that RBOHD and RBOHF are both required for local and systemic ROS signaling at the vascular bundles of Arabidopsis. Taken together, our findings highlight a key role for RBOHD-driven ROS production at the vascular bundles of Arabidopsis in mediating light stress-induced systemic signaling and SAA. In addition, they suggest that the integration of ROS, calcium, electric, and hydraulic signals, during systemic signaling, occurs at the vascular bundles.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201
| |
Collapse
|
11
|
Farvardin A, González-Hernández AI, Llorens E, García-Agustín P, Scalschi L, Vicedo B. The Apoplast: A Key Player in Plant Survival. Antioxidants (Basel) 2020; 9:E604. [PMID: 32664231 PMCID: PMC7402137 DOI: 10.3390/antiox9070604] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
The apoplast comprises the intercellular space, the cell walls, and the xylem. Important functions for the plant, such as nutrient and water transport, cellulose synthesis, and the synthesis of molecules involved in plant defense against both biotic and abiotic stresses, take place in it. The most important molecules are ROS, antioxidants, proteins, and hormones. Even though only a small quantity of ROS is localized within the apoplast, apoplastic ROS have an important role in plant development and plant responses to various stress conditions. In the apoplast, like in the intracellular cell compartments, a specific set of antioxidants can be found that can detoxify the different types of ROS produced in it. These scavenging ROS components confer stress tolerance and avoid cellular damage. Moreover, the production and accumulation of proteins and peptides in the apoplast take place in response to various stresses. Hormones are also present in the apoplast where they perform important functions. In addition, the apoplast is also the space where microbe-associated molecular Patterns (MAMPs) are secreted by pathogens. In summary, the diversity of molecules found in the apoplast highlights its importance in the survival of plant cells.
Collapse
Affiliation(s)
- Atefeh Farvardin
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Ana Isabel González-Hernández
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Eugenio Llorens
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Begonya Vicedo
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|