1
|
Emanowicz P, Średnicka P, Wójcicki M, Roszko M, Juszczuk-Kubiak E. Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients 2024; 16:3757. [PMID: 39519589 PMCID: PMC11547510 DOI: 10.3390/nu16213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenols, such as bisphenol A and its analogs, which include bisphenol S, bisphenol F, bisphenol AF, and tetramethyl bisphenol F, are chemical contaminants commonly found in food that raise serious health concerns. These xenobiotics can potentially have harmful effects on human health. The gut microbiota plays a crucial role in metabolizing and neutralizing these substances, which is essential for their detoxification and elimination. Probiotic supplementation has been studied for its ability to modulate the gut microbiota's composition and function, enhancing detoxification processes. Next-Generation Probiotics (NGPs) may exhibit better properties than traditional strains and are designed for targeted action on specific conditions, such as obesity. By modulating inflammatory responses and reducing the secretion of pro-inflammatory cytokines, they can significantly improve host health. Research on NGPs' ability to neutralize obesogenic bisphenols remains limited, but their potential makes this a promising area for future exploration. This review aims to understand the mechanisms of the chemical transformation of bisphenol through its interactions with the gut microbiota and the role of probiotics, particularly NGPs, in these processes. Understanding the interplay between bisphenols, gut microbiota, and NGPs may pave the way for strategies to counteract the negative health effects associated with daily and chronic exposure to bisphenols, which is crucial for food safety and consumer health protection.
Collapse
Affiliation(s)
- Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| |
Collapse
|
2
|
Lee SW, Lim JM, Jang TH, Park JH, Seralathan KK, Oh BT. Lactiplantibacillus sp. D10-2: potential bacteria for eliminating bisphenol A and reducing BpA-induced lipid accumulation. Int Microbiol 2024; 27:707-718. [PMID: 37659056 DOI: 10.1007/s10123-023-00425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Bisphenol A (BpA) is an endocrine-disrupting substance commonly found in plastics and resins. It is reported that BpA exposure induces lipid accumulation in humans, similar to obesogenic compounds. The main objective of this study is to investigate the removal of BpA using Lactiplantibacillus sp. D10-2, and to examine its potential for reducing BpA-induced lipid accumulation in 3T3-L1 cell line model. The heat-dried cells of Lactiplantibacillus sp. D10-2 showed 69.7% removal efficiency for initial BpA concentration of 10 μg/mL, which was 30.5% higher than the live cells. The absence of metabolites or intermediates in BpA removal studies indicates that the Lactiplantibacillus sp. D10-2 strain removed BpA by adsorption process. The hydrophobic interactions of heat-dried Lactiplantibacillus sp. D10-2 cells were observed to be higher with 33.7% compared to live cells (15.0%), suggesting a stronger ability to bind with BpA. Although the BpA binding onto Lactiplantibacillus sp. D10-2 was not affected by pH, it was confirmed that as the temperature increases, the binding ability got decreased due to mass transfer and diffusion of BpA molecules. Treatment with Lactiplantibacillus sp. D10-2 (0.1, 0.25, 0.5, 1%) reduced lipid accumulation by 61.7, 58.0, 52.7 and 60.4% in 3T3-L1 cells exposed with BpA. In addition, it was confirmed that Lactiplantibacillus sp. D10-2 treatment suppressed the protein expression levels of lipogenesis-related PPARγ and C/EBPα in 3T3-L1 cells. The results of the study suggest that the Lactiplantibacillus sp. D10-2 strain can remove BpA and reduce BpA-accelerated lipid accumulation in 3T3-L1 cells.
Collapse
Affiliation(s)
- Se-Won Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Tae-Hu Jang
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
3
|
Caglayan M, Ozden S. Potential impacts of bisphenols on prostate cells: An overview of cytotoxicity, proliferation, oxidative stress, apoptosis, and ER-stress response activation. Food Chem Toxicol 2024; 184:114416. [PMID: 38134982 DOI: 10.1016/j.fct.2023.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
This study aimed to evaluate the toxic effects of Bisphenol A (BPA), Bisphenol F (BPF) and Bisphenol S (BPS) on PNT1A and PC-3 cells, focusing on their effects on endoplasmic reticulum (ER) stress and related pathways. PNT1A and PC-3 were treated with BPA, BPF and BPS at concentrations of 0.1, 1 and 10 μM for 48 h cytotoxicity, BrdU cell proliferation, ROS generation, apoptosis detection, gene expression analysis and Western blot analysis were performed. BPA induced proliferation and late apoptosis in PNT1A cells, whereas it induced both late apoptosis and early apoptosis in PC-3 cells. BPF and BPS induced late apoptosis in PC-3 cells. Increased ROS levels were observed in PNT1A cells exposed to 1-10 μM BPA. BPA, BPF and BPS increased the expression levels of ER stress-related genes in PNT1A cells. Furthermore, exposure to BPA increased the expression of ER stress-related CHOP/DDIT3 protein in PNT1A cells. These findings highlight the potential health risks associated with BPA, BPF and BPS exposure and emphasize the importance of investigating the underlying mechanisms by which these chemicals may affect human health. Further research is required to comprehensively understand the role of ER stress pathways in cellular responses to these substances.
Collapse
Affiliation(s)
- Mine Caglayan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstanbul University, Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstanbul University, Istanbul, Turkey.
| |
Collapse
|
4
|
Liu S, Liu Y, Zhang D, Li H, Shao X, Xie P, Li J. Novel insights into perfluorinated compound-induced hepatotoxicity: Chronic dietary restriction exacerbates the effects of PFBS on hepatic lipid metabolism in mice. ENVIRONMENT INTERNATIONAL 2023; 181:108274. [PMID: 37879206 DOI: 10.1016/j.envint.2023.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Perfluorobutane sulfonates (PFBS) have garnered extensive utilization because of their distinctive physicochemical properties. The liver acts as a key target organ for toxicity within the body and is vital for regulating metabolic processes, particularly lipid metabolism. However, there is currently a significant research gap regarding the influences of PFBS on hepatic lipid metabolism, especially in individuals with different dietary statuses. Here, the objective of this research was to examine the effects of PFBS on hepatic function under different dietary conditions. The results suggested that the levels of liver injury biomarkers were significantly upregulated, e.g., transaminase (GPT, GOT), while liver lipid levels were downregulated after exposure to PFBS at concentration of 50 μg/L for 42 days. Moreover, restricted diet further intensified the adverse effects of PFBS on the liver. Metabolomics analysis identified significant alterations in lipid-related metabolites in PFBS-induced hepatotoxicity, PFBS exposure induced a decrease in lysophosphatidylethanolamine and lysophosphatidylcholine. PFBS exposure caused an increase in aldosterone and prostaglandin f2alpha under restricted diet. In PFBS treatment group, histidine metabolism, beta-alanine metabolism, and arginine biosynthesis were the main pathway for PFBS toxicity. Aldosterone-regulated sodium reabsorption as a vital factor in inducing PFBS toxicity in the RD-PFBS treatment group. The analysis of 16S rRNA sequencing revealed that exposure to PFBS resulted in imbalance of gut microbial communities. PFBS exposure induced a decrease in Akkermansia and Lactobacillus, but an increase in Enterococcus. PFBS exposure caused the abundance of Lachnospiraceae_NK4A136_group was significantly elevated under restricted diet. Additionally, disruptions in the expression of genes involved in lipid production and consumption may significantly contribute to lipid imbalance in the liver. This study underscores the importance of recognizing the harmful impact of PFBS on liver function, along with the biotoxicity of contaminant influenced by dietary habits.
Collapse
Affiliation(s)
- Su Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yafeng Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Huan Li
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xicheng Shao
- Faculty of Land and Food Systems, Vancouver Campus, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Pengfei Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianmei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Choi YG, Choi WS, Song JY, Lee Y, Lee SH, Lee JS, Lee S, Choi SR, Lee CH, Lee JY. Antiinflammatory effect of the ethanolic extract of Korean native herb Potentilla rugulosa Nakai in Bisphenol-a-stimulated A549 cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:758-773. [PMID: 37527000 DOI: 10.1080/15287394.2023.2240835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Potentilla rugulosa Nakai (P. rugulosa) is a perennial herb in the Rosaceae family and found in the Korean mountains. Previously, our findings demonstrated that P. rugulosa contains numerous polyphenols and flavonoids exhibiting important antioxidant and anti-obesity bioactivities. Bisphenol A (BPA) is a xenoestrogen that was shown to produce pulmonary inflammation in humans. However, the mechanisms underlying BPA-induced inflammation remain to be determined. The aim of this study was to examine whether ethanolic extract of P. rugulosa exerted an inhibitory effect on BPA-induced inflammation utilizing an adenocarcinoma human alveolar basal epithelial cell line A549. The P. rugulosa extract inhibited BPA-mediated cytotoxicity by reducing levels of reactive oxygen species (ROS). Further, P. rugulosa extract suppressed the upregulation of various pro-inflammatory mediators induced by activation of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, inhibition of the NF-κB and MAPK signaling pathways by P. rugulosa extract was found to occur via decrease in the transcriptional activity of NF-κB. Further, blockade of phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK) was noted. Thus, our findings suggest that the ethanolic extract of P. rugulosa may act as a natural anti-inflammatory therapeutic agent.
Collapse
Affiliation(s)
- Yong Geon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jin Yong Song
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Yubin Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Su Hyun Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jong Seok Lee
- Biological Material Analysis Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Sarah Lee
- Biological Material Analysis Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Se Rin Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Alharbi HF, Algonaiman R, Alduwayghiri R, Aljutaily T, Algheshairy RM, Almutairi AS, Alharbi RM, Alfurayh LA, Alshahwan AA, Alsadun AF, Barakat H. Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, and Its Association with Developing Obesity and Diabetes Mellitus: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15918. [PMID: 36497992 PMCID: PMC9736995 DOI: 10.3390/ijerph192315918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 05/14/2023]
Abstract
Bisphenol A, a well-known endocrine-disrupting chemical, has been replaced with its analogs bisphenol S (BPS) and bisphenol F (BPF) over the last decade due to health concerns. BPS and BPF are present in relatively high concentrations in different products, such as food products, personal care products, and sales receipts. Both BPS and BPF have similar structural and chemical properties to BPA; therefore, considerable scientific efforts have investigated the safety of their exposure. In this review, we summarize the findings of relevant epidemiological studies investigating the association between urinary concentrations of BPS and/or BPF with the incidence of obesity or diabetes. The results showed that BPS and BPF were detected in many urinary samples at median concentrations ranging from 0.03 to 0.4 µg·L-1. At this exposure level, BPS median urinary concentrations (0.4 µg·L-1) were associated with the development of obesity. At a lower exposure level (0.1-0.03 µg·L-1), two studies showed an association with developing diabetes. For BPF exposure, only one study showed an association with obesity. However, most of the reported studies only assessed BPS exposure levels. Furthermore, we also summarize the findings of experimental studies in vivo and in vitro regarding our aim; results support the possible obesogenic effects/metabolic disorders mediated by BPS and/or BPF exposure. Unexpectedly, BPS may promote worse obesogenic effects than BPA. In addition, the possible mode of action underlying the obesogenic effects of BPS might be attributed to various pathophysiological mechanisms, including estrogenic or androgenic activities, alterations in the gene expression of critical adipogenesis-related markers, and induction of oxidative stress and an inflammatory state. Furthermore, susceptibility to the adverse effects of BPS may be altered by sex differences according to the results of both epidemiological and experimental studies. However, the possible mode of action underlying these sex differences is still unclear. In conclusion, exposure to BPS or BPF may promote the development of obesity and diabetes. Future approaches are highly needed to assess the safety of BPS and BPF regarding their potential effects in promoting metabolic disturbances. Other studies in different populations and settings are highly suggested.
Collapse
Affiliation(s)
- Hend F. Alharbi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Raya Algonaiman
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Rana Alduwayghiri
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Reham M. Algheshairy
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdulkarim S. Almutairi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Razan M. Alharbi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Leena A. Alfurayh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad A. Alshahwan
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad F. Alsadun
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
7
|
Men X, Han X, Lee SJ, Oh G, Park KT, Han JK, Choi SI, Lee OH. Anti-Obesogenic Effects of Sulforaphane-Rich Broccoli (Brassica oleracea var. italica) Sprouts and Myrosinase-Rich Mustard (Sinapis alba L.) Seeds in Vitro and in Vivo. Nutrients 2022; 14:nu14183814. [PMID: 36145190 PMCID: PMC9505190 DOI: 10.3390/nu14183814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Glucoraphanin (GRA), a glucosinolate particularly abundant in broccoli (Brassica oleracea var. italica) sprouts, can be converted to sulforaphane (SFN) by the enzyme myrosinase. Herein, we investigated the anti-obesogenic effects of broccoli sprout powder (BSP), mustard (Sinapis alba L.) seed powder (MSP), and sulforaphane-rich MSP-BSP mixture powder (MBP) in bisphenol A (BPA)-induced 3T3-L1 cells and obese C57BL/6J mice. In vitro experiments showed that MBP, BSP, and MSP have no cytotoxic effects. Moreover, MBP and BSP inhibited the lipid accumulation in BPA-induced 3T3-L1 cells. In BPA-induced obese mice, BSP and MBP treatment inhibited body weight gain and ameliorated dyslipidemia. Furthermore, our results showed that BSP and MBP could activate AMPK, which increases ACC phosphorylation, accompanied by the upregulation of lipolysis-associated proteins (UCP-1 and CPT-1) and downregulation of adipogenesis-related proteins (C/EBP-α, FAS, aP2, PPAR-γ, and SREBP-1c), both in vitro and in vivo. Interestingly, MBP exerted a greater anti-obesogenic effect than BSP. Taken together, these findings indicate that BSP and MBP could inhibit BPA-induced adipocyte differentiation and adipogenesis by increasing the expression of the proteins related to lipid metabolism and lipolysis, effectively treating BPA-induced obesity. Thus, BSP and MBP can be developed as effective anti-obesogenic drugs.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Keun-Tae Park
- Research and Development Center, Milae Bioresourece Co., Ltd., Seoul 05542, Korea
| | - Jong-Kwon Han
- Research and Development Center, Milae Bioresourece Co., Ltd., Seoul 05542, Korea
| | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-I.C.); (O.-H.L.); Tel.: +82-33-250-6454 (S.-I.C.); +82-33-250-6454 (O.-H.L.); Fax: +82-33-259-5561 (S.-I.C.); +82-33-259-5561 (O.-H.L.)
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-I.C.); (O.-H.L.); Tel.: +82-33-250-6454 (S.-I.C.); +82-33-250-6454 (O.-H.L.); Fax: +82-33-259-5561 (S.-I.C.); +82-33-259-5561 (O.-H.L.)
| |
Collapse
|
8
|
The Mixture of Bisphenol-A and Its Substitutes Bisphenol-S and Bisphenol-F Exerts Obesogenic Activity on Human Adipose-Derived Stem Cells. TOXICS 2022; 10:toxics10060287. [PMID: 35736896 PMCID: PMC9229358 DOI: 10.3390/toxics10060287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022]
Abstract
Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and S (BPS), have previously shown in vitro obesogenic activity. This study was designed to investigate their combined effect on the adipogenic differentiation of human adipose-derived stem cells (hASCs). Cells were exposed for 14 days to an equimolar mixture of bisphenols (MIX) (range 10 nM–10 µM). Oil Red staining was used to measure intracellular lipid accumulation, quantitative real-time polymerase chain reaction (qRT-PCR) to study gene expression of adipogenic markers (PPARγ, C/EBPα, LPL, and FABP4), and Western Blot to determine their corresponding proteins. The MIX promoted intracellular lipid accumulation in a dose-dependent manner with a maximal response at 10 µM. Co-incubation with pure antiestrogen (ICI 182,780) inhibited lipid accumulation, suggesting that the effect was mediated by the estrogen receptor. The MIX also significantly altered the expression of PPARγ, C/EBPα, LPL, and FABP4 markers, observing a non-monotonic (U-shaped) dose-response, with maximal gene expression at 10 nM and 10 µM and lesser expression at 1 µM. This pattern was not observed when bisphenols were tested individually. Exposure to MIX (1–10 µM) also increased all encoded proteins except for FABP4, which showed no changes. Evaluation of the combined effect of relevant chemical mixtures is needed rather than single chemical testing.
Collapse
|
9
|
Lee HP, Kim DS, Park SH, Shin CY, Woo JJ, Kim JW, An RB, Lee C, Cho JY. Antioxidant Capacity of Potentilla paradoxa Nutt. and Its Beneficial Effects Related to Anti-Aging in HaCaT and B16F10 Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:873. [PMID: 35406853 PMCID: PMC9003520 DOI: 10.3390/plants11070873] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Skin aging is a natural process influenced by intrinsic and extrinsic factors, and many skin anti-aging strategies have been developed. Plants from the genus Potentilla has been used in Europe and Asia to treat various diseases. Potentilla paradoxa Nutt. has been used as a traditional medicinal herb in China and has recently been shown to have anti-inflammatory effects. Despite the biological and pharmacological potential of Potentilla paradoxa Nutt., its skin anti-aging effects remain unclear. Therefore, this study evaluated the free radical scavenging, moisturizing, anti-melanogenic, and wound-healing effects of an ethanol extract of Potentilla paradoxa Nutt. (Pp-EE). Pp-EE was found to contain phenolics and flavonoids and exhibits in vitro antioxidant activities. α-Linolenic acid was found to be a major component of Pp-EE on gas chromatography-mass spectrometry. Pp-EE promoted the expression of hyaluronic acid (HA) synthesis-related enzymes and suppressed the expression of HA degradation-related enzymes in keratinocytes, so it may increase skin hydration. Pp-EE also showed inhibitory effects on the production and secretion of melanin in melanocytes. In a scratch assay, Pp-EE improved skin wound healing. Taken together, Pp-EE has several effects that may delay skin aging, suggesting its potential benefits as a natural ingredient in cosmetic or pharmaceutical products.
Collapse
Affiliation(s)
- Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.P.L.); (D.S.K.); (J.W.K.)
| | - Dong Seon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.P.L.); (D.S.K.); (J.W.K.)
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (C.Y.S.); (J.J.W.)
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (C.Y.S.); (J.J.W.)
| | - Jin Joo Woo
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (C.Y.S.); (J.J.W.)
| | - Ji Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.P.L.); (D.S.K.); (J.W.K.)
| | - Ren-Bo An
- College of Pharmacy, Yanbian University, Yanji 133002, China;
| | - Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.P.L.); (D.S.K.); (J.W.K.)
| |
Collapse
|
10
|
Völker J, Ashcroft F, Vedøy Å, Zimmermann L, Wagner M. Adipogenic Activity of Chemicals Used in Plastic Consumer Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022. [PMID: 35080176 DOI: 10.1101/2021.07.29.454199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bisphenols and phthalates, chemicals frequently used in plastic products, promote obesity in cell and animal models. However, these well-known metabolism-disrupting chemicals (MDCs) represent only a minute fraction of all compounds found in plastics. To gain a comprehensive understanding of plastics as a source of exposure to MDCs, we characterized the chemicals present in 34 everyday products using nontarget high-resolution mass spectrometry and analyzed their joint adipogenic activities by high-content imaging. We detected 55,300 chemical features and tentatively identified 629 unique compounds, including 11 known MDCs. Importantly, the chemicals extracted from one-third of the products caused murine 3T3-L1 preadipocytes to proliferate, and differentiate into adipocytes, which were larger and contained more triglycerides than those treated with the reference compound rosiglitazone. Because the majority of plastic extracts did not activate the peroxisome proliferator-activated receptor γ and the glucocorticoid receptor, the adipogenic effects are mediated via other mechanisms and, thus, likely to be caused by unknown MDCs. Our study demonstrates that daily-use plastics contain potent mixtures of MDCs and can, therefore, be a relevant yet underestimated environmental factor contributing to obesity.
Collapse
Affiliation(s)
- Johannes Völker
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Felicity Ashcroft
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Åsa Vedøy
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Lisa Zimmermann
- Department of Aquatic Ecotoxicology, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
11
|
Guo Y, Yao B, Da W, Du F, Yuan M, Li J. The complete chloroplast genome and phylogenetic analysis of Potentilla sischanensis Bunge ex Lehm. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3250-3252. [PMID: 34693013 PMCID: PMC8530491 DOI: 10.1080/23802359.2021.1991244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Potentilla sischanensis Bunge ex Lehm. is a widespread perennial herb in north China. The plant has little yellow flowers, and the petioles are white-tomentose and sparsely villous. To determine the chloroplast genome, total genomic DNA was extracted from fresh leaves and sequenced. The complete chloroplast genome was assembled and annotated. The chloroplast genome of this plant is a circular form with a length of 156,240 bp, including a large single-copy region (LSC, 85,748 bp), a small single-copy region (SSC, 18,566 bp), and two inverted repeats (IRs, 25,963 bp). A total of 132 genes were predicted, comprising 87 encoded proteins, 8 rRNAs and 37 tRNAs. The evolutionary history indicates that P. sischanensis was grouped within Potentilla and formed a clade with Potentilla chinensis and Potentilla stolonifera with a 100% bootstrap support value. The complete cp genome can serve as a reference for future studies on molecular biology, evolution, population genetics, taxonomy and resource protection.
Collapse
Affiliation(s)
- Yupeng Guo
- Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, College of Ecological Environment and Resources, Qinghai Nationalities University, Xining, Qinghai, P. R. China
| | - Buqing Yao
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, People's Republic of China
| | - Wenting Da
- Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, College of Ecological Environment and Resources, Qinghai Nationalities University, Xining, Qinghai, P. R. China
| | - Feichao Du
- Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, College of Ecological Environment and Resources, Qinghai Nationalities University, Xining, Qinghai, P. R. China
| | - Mengran Yuan
- Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, College of Ecological Environment and Resources, Qinghai Nationalities University, Xining, Qinghai, P. R. China
| | - Junqiao Li
- Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, College of Ecological Environment and Resources, Qinghai Nationalities University, Xining, Qinghai, P. R. China
| |
Collapse
|
12
|
Zhao B, Liu M, Liu H, Xie J, Yan J, Hou X, Liu J. Zeaxanthin promotes browning by enhancing mitochondrial biogenesis through the PKA pathway in 3T3-L1 adipocytes. Food Funct 2021; 12:6283-6293. [PMID: 34047728 DOI: 10.1039/d1fo00524c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is closely associated with maintaining mitochondrial homeostasis, and mitochondrial dysfunction can lead to systemic lipid metabolism disorders. Zeaxanthin (ZEA) is a kind of carotenoid with potent antioxidant activity and has been reported to promote mitochondrial biogenesis. Nevertheless, the molecular mechanism has not been explained. In this study, we first discovered that ZEA stimulated 3T3-L1 adipocyte browning by increasing the expression of specific markers (Cd137, Tbx1, Sirt1, Cidea, Ucp1, Tmem26, and Cited1), thereby reducing lipid accumulation. Besides, ZEA promoted mitochondrial biogenesis by increasing the expression of PRDM16, UCP1, NRF2, PGC-1α, and SIRT1. Moreover, the uncoupled oxygen consumption rate (OCR) of protons leaked in 3T3-L1 adipocytes was rapidly increased by ZEA treatment, which improved mitochondrial respiration and energy metabolism. Furthermore, we found that ZEA promotes browning by enhancing mitochondrial biogenesis partly through the protein kinase A (PKA) pathway. This study provided new insight into the promotion of browning and mitochondrial biogenesis by ZEA, suggesting that ZEA probably has potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Bailing Zhao
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Bisphenol F and bisphenol S promote lipid accumulation and adipogenesis in human adipose-derived stem cells. Food Chem Toxicol 2021; 152:112216. [PMID: 33865937 DOI: 10.1016/j.fct.2021.112216] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
Bisphenol F (BPF) and bisphenol S (BPS) are increasingly used as substitutes for bisphenol A (BPA), an endocrine disrupting chemical (EDC) with obesogenic activity. We investigated the in vitro effects of BPS and BPF on the adipogenesis of human adipose-derived stem cells (hASCs) exposed to different doses (0.01, 0.1, 1, 10 and 25 μM), stopping the adipogenic process at 7 or 14 days. Intracellular lipid accumulation was quantified by the Oil Red O assay, gene expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAT/enhancer-binding protein (C/EBPα), lipoprotein-lipase (LPL) and fatty acid binding protein 4 (FABP4), by quantitative real-time polymerase chain reaction (qRT-PCR) and protein levels by Western Blot. hASCs with BPF or BPS produced a linear dose-response increase in intracellular lipid accumulation and in gene expression of the adipogenic markers, confirmed by protein levels. Co-treatment ICI 182,780 significantly inhibited BPF- but not BPS-induced lipid accumulation. Given the affinity of bisphenols for diverse nuclear receptors, their obesogenic effects may result from a combination of pathways rather than a single mechanism. Further research is warranted on the manner in which chemicals interfere with adipogenic differentiation. To our best knowledge, this report shows for the first time the obesogenic potential of BPF in hASCs.
Collapse
|
14
|
Augustynowicz D, Latté KP, Tomczyk M. Recent phytochemical and pharmacological advances in the genus Potentilla L. sensu lato - An update covering the period from 2009 to 2020. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113412. [PMID: 32987127 DOI: 10.1016/j.jep.2020.113412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Potentilla plants are still common herbal medicines used in folk medicine. This review provides an update of research undertaken on Potentilla from 2009 until 2020. AIM OF THE STUDY This comprehensive review considers biological updates, recent advances in phytochemical and pharmacological research, and toxicological reports on Potentilla sensu lato based on available data since 2009. METHODS A literature search was conducted using available databases including ScienceDirect, PubMed, Scopus, Web of Science, China National Knowledge Infrastructure and Google Scholar. RESULTS Until now, more than 210 new and known compounds, including flavonoids, tannins, triterpenes and phenolic compounds, have been confirmed and elucidated for numerous Potentilla species, i.e., in the underground and aerial parts of this genus. Modern pharmacology studies have revealed that those structures are responsible for a broad spectrum of pharmacological activities, such as anti-neoplastic, antihyperglycemic, anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, antibacterial and anti-yeast effects. CONCLUSIONS However, in vitro studies must be re-considered due to the discovery of urolithins and their origins, including microbiota, which can lead to different results when applying Potentilla species and their extracts to in vivo conditions. Thus, future research should focus more on in vivo and particularly clinical studies to confirm the validity and safety of traditional uses. Particularly, the use of Potentilla alba extracts in the treatment of thyroid gland disorders should be further explored to confirm the underlying mechanism of their action, efficacy and safety. In addition, more clinical studies should focus on Potentilla erecta rhizome extracts for application as herbal remedies against dysentery, diarrhoea and inflammation of the skin.
Collapse
Affiliation(s)
- Daniel Augustynowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland
| | | | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland.
| |
Collapse
|
15
|
Inhibitory Effect and Mechanism of Action of Quercetin and Quercetin Diels-Alder anti-Dimer on Erastin-Induced Ferroptosis in Bone Marrow-Derived Mesenchymal Stem Cells. Antioxidants (Basel) 2020; 9:antiox9030205. [PMID: 32131401 PMCID: PMC7139729 DOI: 10.3390/antiox9030205] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
In this study, the anti-ferroptosis effects of catecholic flavonol quercetin and its metabolite quercetin Diels-Alder anti-dimer (QDAD) were studied using an erastin-treated bone marrow-derived mesenchymal stem cell (bmMSCs) model. Quercetin exhibited higher anti-ferroptosis levels than QDAD, as indicated by 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY), 2',7'-dichlorodihydrofluoroscein diacetate (H2DCFDA), lactate dehydrogenase (LDH) release, cell counting kit-8 (CCK-8), and flow cytometric assays. To understand the possible pathways involved, the reaction product of quercetin with the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH●) was measured using ultra-performance liquid-chromatography coupled with electrospray-ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS). Quercetin was found to produce the same clusters of molecular ion peaks and fragments as standard QDAD. Furthermore, the antioxidant effects of quercetin and QDAD were compared by determining their 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical-scavenging, Cu2+-reducing, Fe3+-reducing, lipid peroxidation-scavenging, and DPPH●-scavenging activities. Quercetin consistently showed lower IC50 values than QDAD. These findings indicate that quercetin and QDAD can protect bmMSCs from erastin-induced ferroptosis, possibly through the antioxidant pathway. The antioxidant pathway can convert quercetin into QDAD-an inferior ferroptosis-inhibitor and antioxidant. The weakening has highlighted a rule for predicting the relative anti-ferroptosis and antioxidant effects of catecholic flavonols and their Diels-Alder dimer metabolites.
Collapse
|