1
|
Negre-Salvayre A, Salvayre R. Post-Translational Modifications Evoked by Reactive Carbonyl Species in Ultraviolet-A-Exposed Skin: Implication in Fibroblast Senescence and Skin Photoaging. Antioxidants (Basel) 2022; 11:2281. [PMID: 36421467 PMCID: PMC9687576 DOI: 10.3390/antiox11112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Photoaging is an accelerated form of aging resulting from skin exposure to ultraviolet (UV) radiation. UV-A radiation deeply penetrates the dermis and triggers the generation of reactive oxygen species (ROS) which promotes damage to DNA, lipids and proteins. Lipid peroxidation results from the oxidative attack of polyunsaturated fatty acids which generate a huge amount of lipid peroxidation products, among them reactive carbonyl species (RCS) such as α, β-unsaturated hydroxyalkenals (e.g., 4-hydroxynonenal), acrolein or malondialdehyde. These highly reactive agents form adducts on free NH2 groups and thiol residues on amino acids in proteins and can also modify DNA and phospholipids. The accumulation of RCS-adducts leads to carbonyl stress characterized by progressive cellular and tissular dysfunction, inflammation and toxicity. RCS-adducts are formed in the dermis of skin exposed to UV-A radiation. Several RCS targets have been identified in the dermis, such as collagen and elastin in the extracellular matrix, whose modification could contribute to actinic elastosis lesions. RCS-adducts may play a role in fibroblast senescence via the modification of histones, and the sirtuin SIRT1, leading to an accumulation of acetylated proteins. The cytoskeleton protein vimentin is modified by RCS, which could impair fibroblast motility. A better identification of protein modification and carbonyl stress in the dermis may help to develop new treatment approaches for preventing photoaging.
Collapse
Affiliation(s)
- Anne Negre-Salvayre
- Faculty of Medicine, Department of Biochemistry, INSERM U1297 and University of Toulouse, 31432 Toulouse, France
| | | |
Collapse
|
2
|
Peter Eckl: Research on the Pro-/Antioxidant Balance. Antioxidants (Basel) 2022; 11:antiox11061079. [PMID: 35739976 PMCID: PMC9219729 DOI: 10.3390/antiox11061079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
|
3
|
Long MJC, Huang KT, Aye Y. The not so identical twins: (dis)similarities between reactive electrophile and oxidant sensing and signaling. Chem Soc Rev 2021; 50:12269-12291. [PMID: 34779447 DOI: 10.1039/d1cs00467k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this tutorial review, we compare and contrast the chemical mechanisms of electrophile/oxidant sensing, and the molecular mechanisms of signal propagation. We critically analyze biological systems in which these different pathways are believed to be manifest and what the data really mean. Finally, we discuss applications of this knowledge to disease treatment and drug development.
Collapse
Affiliation(s)
| | - Kuan-Ting Huang
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yimon Aye
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Zheng H, Jiang L, Tsuduki T, Conrad M, Toyokuni S. Embryonal erythropoiesis and aging exploit ferroptosis. Redox Biol 2021; 48:102175. [PMID: 34736120 PMCID: PMC8577445 DOI: 10.1016/j.redox.2021.102175] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is a form of regulated cell necrosis, as a consequence of Fe(II)-dependent lipid peroxidation. Although ferroptosis has been linked to cancer cell death, neurodegeneration and reperfusion injury, physiological roles of ferroptosis have not been elucidated to date mostly due to the lack of appropriate methodologies. Here, we show that 4-hydroxy-2-nonenal (HNE)-modified proteins detected by a HNEJ-1 mouse monoclonal antibody is a robust immunohistochemical technology to locate ferroptosis in tissues in combination with morphological nuclear information, based on various models of ferroptosis, including erastin-induced cysteine-deprivation, conditional Gpx4 knockout and Fe(II)-dependent renal tubular injury, as well as other types of regulated cell death. Specificity of HNEJ-1 with ferroptosis was endorsed by non-selective identification of HNE-modified proteins in an Fe(II)-dependent renal tubular injury model. We further comprehensively searched for signs of ferroptosis in different developmental stages of Fischer-344 rats from E9.5-2.5 years of age. We observed that there was a significant age-dependent increase in ferroptosis in the kidney, spleen, liver, ovary, uterus, cerebellum and bone marrow, which was accompanied by iron accumulation. Not only phagocytic cells but also parenchymal cells were affected. Epidermal ferroptosis in ageing SAMP8 mice was significantly promoted by high-fat or carbohydrate-restricted diets. During embryogenesis of Fischer-344 rats, we found ferroptosis in nucleated erythrocytes at E13.5, which disappeared in enucleated erythrocytes at E18.5. Administration of a ferroptosis inhibitor, liproxstatin-1, significantly delayed erythrocyte enucleation. Therefore, our results demonstrate for the first time the involvement of ferroptosis in physiological processes, such as embryonic erythropoiesis and aging, suggesting the evolutionally acquired mechanism and the inevitable side effects, respectively.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, 85764, Neuherberg, Germany; Pirogov National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan.
| |
Collapse
|