1
|
Zhang M, Xu X, Chen Y, Wei C, Zhan S, Cao J, Guo J, Dai D, Wang L, Zhong T, Zhang H, Li L. Transcriptomic and Metabolomic Analyses Reveal Molecular Regulatory Networks for Pigmentation Deposition in Sheep. Int J Mol Sci 2024; 25:8248. [PMID: 39125816 PMCID: PMC11311981 DOI: 10.3390/ijms25158248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Domestic animals have multiple phenotypes of skin and coat color, which arise from different genes and their products, such as proteins and metabolites responsible with melanin deposition. However, the complex regulatory network of melanin synthesis remains to be fully unraveled. Here, the skin and tongue tissues of Liangshan black sheep (black group) and Liangshan semi-fine-wool sheep (pink group) were collected, stained with hematoxylin-eosin (HE) and Masson-Fontana, and the transcriptomic and metabolomic data were further analyzed. We found a large deposit of melanin granules in the epidermis of the black skin and tongue. Transcriptome and metabolome analysis identified 744 differentially expressed genes (DEGs) and 443 differentially expressed metabolites (DEMs) between the pink and black groups. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses revealed the DEGs and DEMs were mainly enriched in the pathways of secondary metabolic processes, melanin biosynthesis processes, melanin metabolism processes, melanosome membranes, pigment granule membranes, melanosome, tyrosine metabolism, and melanogenesis. Notably, we revealed the gene ENSARG00020006042 may be a family member of YWHAs and involved in regulating melanin deposition. Furthermore, several essential genes (TYR, TYRP1, DCT, PMEL, MLANA, SLC45A2) were significantly associated with metabolite prostaglandins and compounds involved in sheep pigmentation. These findings provide new evidence of the strong correlation between prostaglandins and related compounds and key genes that regulate sheep melanin synthesis, furthering our understanding of the regulatory mechanisms and molecular breeding of pigmentation in sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hongping Zhang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Campisciano V, Valentino L, Laura Alfieri M, La Parola V, Napolitano A, Giacalone F, Gruttadauria M. Highly Functionalized SWCNTs with a Dopamine Derivative as a Support for Pd Nanoparticles: A Recyclable Catalyst for the Reduction of Nitro Compounds and the Heck Reaction. Chemistry 2023; 29:e202301238. [PMID: 37518681 DOI: 10.1002/chem.202301238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/01/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) were functionalized with a dopamine derivative in which the amine group was converted to azide (dopamine azide). The direct reaction of SWCNTs and dopamine azide in o-dichlorobenzene at high temperature (160 °C) led to very highly functionalized CNTs (≈60 wt.%). Surprisingly, despite this high degree of functionalization, Raman spectroscopy detected a low disruption of the π-network of the carbonaceous support. This finding was justified by the rehybridization from sp3 to sp2 of the sidewall carbon atoms of CNTs involved in the functionalization process. Further characterization by means of different techniques such as X-ray photoelectron spectroscopy (XPS) analysis and transmission electron microscopy (TEM) allowed to shed some light on the chemical composition and morphology of the obtained material. Moreover, the estimation of the total content of phenolic units and their reducing potential after CNTs functionalization was also assessed using Folin and Ciocalteu and 2,2-diphenyl-1-picryl hydrazide (DPPH) assays. The functionalization of CNTs was exploited to immobilize palladium(II) species that were subsequently reduced with NaBH4 leading to the formation of Pd nanoparticles (NPs). The so obtained hybrid material was used as a recyclable heterogeneous catalyst for the reduction of nitro compounds and the Heck reaction.
Collapse
Affiliation(s)
- Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Laura Valentino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, 80126, Naples, Italy
| | - Valeria La Parola
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, 80126, Naples, Italy
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| |
Collapse
|
3
|
Argenziano R, Alfieri ML, Arntz Y, Castaldo R, Liberti D, Maria Monti D, Gentile G, Panzella L, Crescenzi O, Ball V, Napolitano A, d'Ischia M. Non-covalent small molecule partnership for redox-active films: Beyond polydopamine technology. J Colloid Interface Sci 2022; 624:400-410. [PMID: 35671617 DOI: 10.1016/j.jcis.2022.05.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
HYPOTHESIS The possibility to use hexamethylenediamine (HMDA) to impart film forming ability to natural polymers including eumelanins and plant polyphenols endowed with biological activity and functional properties has been recently explored with the aim to broaden the potential of polydopamine (PDA)-based films overcoming their inherent limitations. 5,6-dihydroxyindole-2-carboxylic acid, its methyl ester (MeDHICA) and eumelanins thereof were shown to exhibit potent reducing activity. EXPERIMENTS MeDHICA and HMDA were reacted in aqueous buffer, pH 9.0 in the presence of different substrates to assess the film forming ability. The effect of different reaction parameters (pH, diamine chain length) on film formation was investigated. Voltammetric and AFM /SEM methods were applied for analysis of the film redox activity and morphology. HPLC, MALDI-MS and 1HNMR were used for chemical characterization. The film reducing activity was evaluated in comparison with PDA by chemical assays and using UV stressed human immortalized keratinocytes (HaCat) cells model. FINDINGS Regular and homogeneous yellowish films were obtained with moderately hydrophobic properties. Film deposition was optimal at pH 9, and specifically induced by HMDA. The film consisted of HMDA and monomeric MeDHICA accompanied by dimers/small oligomers, but no detectable MeDHICA/HMDA covalent conjugation products. Spontaneous assembly of self-organized networks held together mainly by electrostatic interactions of MeDHICA in the anion form and HMDA as the dication is proposed as film deposition mechanism. The film displayed potent reducing properties and exerted significant protective effects from oxidative stress on HaCaT.
Collapse
Affiliation(s)
- Rita Argenziano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Youri Arntz
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, Strasbourg 67000, France
| | - Rachele Castaldo
- Institute for Polymers, Composites and Biomaterials - National Research Council of Italy, Via Campi Flegrei, 34, Pozzuoli, NA 80078, Italy
| | - Davide Liberti
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Gennaro Gentile
- Institute for Polymers, Composites and Biomaterials - National Research Council of Italy, Via Campi Flegrei, 34, Pozzuoli, NA 80078, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Vincent Ball
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, Strasbourg 67000, France
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy.
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| |
Collapse
|
4
|
Argenziano R, Della Greca M, Panzella L, Napolitano A. A Straightforward Access to New Amides of the Melanin Precursor 5,6-Dihydroxyindole-2-carboxylic Acid and Characterization of the Properties of the Pigments Thereof. Molecules 2022; 27:4816. [PMID: 35956765 PMCID: PMC9369804 DOI: 10.3390/molecules27154816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
We report herein an optimized procedure for preparation of carboxamides of 5,6-dihydroxyindole-2-carboxylic acid (DHICA), the main biosynthetic precursor of the skin photoprotective agents melanins, to get access to pigments with more favorable solubility properties with respect to the natural ones. The developed procedure was based on the use of a coupling agent (HATU/DIPEA) and required protection of the catechol function by easily removable acetyl groups. The O-acetylated compounds could be safely stored and taken to the reactive o-diphenol form just before use. Satisfactorily high yields (>85%) were obtained for all amides. The oxidative polymerization of the synthesized amides carried out in air in aqueous buffer at pH 9 afforded melanin-like pigmented materials that showed chromophores resembling those of DHICA-derived pigments, with a good covering of the UVA and the visible region, and additionally exhibited a good solubility in alcoholic solvents, a feature of great interest for the exploitation of these materials as ingredients of dermocosmetic formulations.
Collapse
Affiliation(s)
| | | | | | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (R.A.); (M.D.G.); (L.P.)
| |
Collapse
|
5
|
Moccia F, Agustin-Salazar S, Verotta L, Caneva E, Giovando S, D’Errico G, Panzella L, d’Ischia M, Napolitano A. Antioxidant Properties of Agri-food Byproducts |and Specific Boosting Effects of Hydrolytic Treatments. Antioxidants (Basel) 2020; 9:E438. [PMID: 32443466 PMCID: PMC7278820 DOI: 10.3390/antiox9050438] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023] Open
Abstract
Largely produced agri-food byproducts represent a sustainable and easily available source of phenolic compounds, such as lignins and tannins, endowed with potent antioxidant properties. We report herein the characterization of the antioxidant properties of nine plant-derived byproducts. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated the superior activity of pomegranate peels and seeds, grape pomace and pecan nut shell. An increase in the antioxidant potency was observed for most of the waste materials following a hydrolytic treatment, with the exception of the condensed tannin-rich pecan nut shell and grape pomace. UV-Vis and HPLC investigation of the soluble fractions coupled with the results from IR analysis and chemical degradation approaches on the whole materials allowed to conclude that the improvement of the antioxidant properties was due not only to removal of non-active components (mainly carbohydrates), but also to structural modifications of the phenolic compounds. Parallel experiments run on natural and bioinspired model phenolic polymers suggested that these structural modifications positively impacted on the antioxidant properties of lignins and hydrolyzable tannins, whereas significant degradation of condensed tannin moieties occurred, likely responsible for the lowering of the reducing power observed for grape pomace and pecan nut shell. These results open new perspectives toward the exploitation and manipulation of agri-food byproducts for application as antioxidant additives in functional materials.
Collapse
Affiliation(s)
- Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Sarai Agustin-Salazar
- Departamento de Ingeniería Química y Metalurgía, Universidad de Sonora, Del Conocimiento, Centro, 83000 Hermosillo, Mexico;
| | - Luisella Verotta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via G. Celoria 2, I-20133 Milan, Italy;
| | - Enrico Caneva
- Unitech COSPECT, Direzione servizi per la Ricerca, Università degli Studi di Milano, Via C. Golgi 33, I-20133 Milan, Italy;
| | - Samuele Giovando
- Centro Ricerche per la Chimica Fine Srl for Silvateam Spa, Via Torre 7, I-12080 San Michele Mondovì, CN, Italy;
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
- CSGI—Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Marco d’Ischia
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| |
Collapse
|
6
|
Panzella L. Natural Phenolic Compounds for Health, Food and Cosmetic Applications. Antioxidants (Basel) 2020; 9:E427. [PMID: 32429080 PMCID: PMC7278880 DOI: 10.3390/antiox9050427] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/23/2022] Open
Abstract
Based on their potent antioxidant properties, natural phenolic compounds have gained more and more attention for their possible exploitation as food supplements, as well as functional ingredients in food and in the cosmetic industry [...].
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy
| |
Collapse
|
7
|
Ramos M, Beltran A, Fortunati E, Peltzer M, Cristofaro F, Visai L, Valente AJ, Jiménez A, Kenny JM, Garrigós MC. Controlled Release of Thymol from Poly(Lactic Acid)-Based Silver Nanocomposite Films with Antibacterial and Antioxidant Activity. Antioxidants (Basel) 2020; 9:E395. [PMID: 32392898 PMCID: PMC7278659 DOI: 10.3390/antiox9050395] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Thymol and silver nanoparticles (Ag-NPs) were used to develop poly(lactic acid) (PLA)-based films with antioxidant and antibacterial performance. Different amounts of thymol (6 and 8 wt%) and 1 wt% Ag-NPs were added to PLA to produce the active films. Ag-NPs and thymol were successfully identified in the nanocomposite structures using spectroscopic techniques. A kinetic study was performed to evaluate the release of thymol and Ag-NPs from the nanocomposites to an aqueous food simulant (ethanol 10%, v/v) at 40 °C. The diffusion of thymol from the polymer matrix was affected by the presence of non-migrating Ag-NPs, which showed non-Fickian release behavior. The ternary system including 1 wt% Ag-NPs and 8 wt% thymol showed clear antibacterial performance by reducing the cell viability of Escherichia coli and Staphylococcus aureus by around 40% after 3 and 24 h of storage at 4, 25, and 37 °C compared to neat PLA. Significant antioxidant behavior of all active films was also confirmed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The obtained nanocomposite films based on PLA and the addition of Ag-NPs and thymol were proven to have combined antioxidant and antibacterial performance, with controlled release of thymol. These formulations have potential applications in the development of innovative and customized active packaging systems to increase the shelf-life of food products.
Collapse
Affiliation(s)
- Marina Ramos
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, 03080 Alicante, Spain; (A.B.); (A.J.); (M.C.G.)
| | - Ana Beltran
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, 03080 Alicante, Spain; (A.B.); (A.J.); (M.C.G.)
| | - Elena Fortunati
- Civil Environmental Engineering Department, University of Perugia, UdR INSTM, Strada di Pentima 4, 05100 Terni, Italy; (E.F.); (J.M.K.)
| | - Mercedes Peltzer
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires B1876BXD, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1425FQB, Argentina
| | - Francesco Cristofaro
- Department of Molecular Medicine, Center for Health Technologies (C.H.T.), UdR INSTM, University of Pavia, 27100 Pavia, Italy; (F.C.); (L.V.)
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (C.H.T.), UdR INSTM, University of Pavia, 27100 Pavia, Italy; (F.C.); (L.V.)
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici (ICS) Maugeri, Società Benefit S.p.A IRCCS, 27100 Pavia, Italy
| | - Artur J.M. Valente
- Department of Chemistry, University of Coimbra, CQC, 3004-535 Coimbra, Portugal;
| | - Alfonso Jiménez
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, 03080 Alicante, Spain; (A.B.); (A.J.); (M.C.G.)
| | - José María Kenny
- Civil Environmental Engineering Department, University of Perugia, UdR INSTM, Strada di Pentima 4, 05100 Terni, Italy; (E.F.); (J.M.K.)
| | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, 03080 Alicante, Spain; (A.B.); (A.J.); (M.C.G.)
| |
Collapse
|